Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium potassium chromates

Several types of corrosion inhibitors have been investigated in the last 20 years [53-55] these include calcium and sodium nitrites, sodium benzoate, sodium/potassium chromate, sodium salts of silicates and phosphates, stannous chloride, hydrazine hydrate, sodium fluorophosphate, permanganate, aniline and related compounds, alkalis, azides, ferrocyanide, EDTA and many chelating compounds. However, in terms of field practice and research data, nitrite-based compounds occupy a dominant position. [Pg.330]

The Chilean nitrate deposits are located in the north of Chile, in a plateau between the coastal range and the Andes mountains, in the Atacama desert. These deposits are scattered across an area extending some 700 km in length, and ranging in width from a few kilometers to about 50 km. Most deposits are in areas of low rehef, about 1200 m above sea level. The nitrate ore, caUche, is a conglomerate of insoluble and barren material such as breccia, sands, and clays (qv), firmly cemented by soluble oxidized salts that are predominandy sulfates, nitrates, and chlorides of sodium, potassium, and magnesium. Cahche also contains significant quantities of borates, chromates, chlorates, perchlorates, and iodates. [Pg.192]

Sihcon carbide is comparatively stable. The only violent reaction occurs when SiC is heated with a mixture of potassium dichromate and lead chromate. Chemical reactions do, however, take place between sihcon carbide and a variety of compounds at relatively high temperatures. Sodium sihcate attacks SiC above 1300°C, and SiC reacts with calcium and magnesium oxides above 1000°C and with copper oxide at 800°C to form the metal sihcide. Sihcon carbide decomposes in fused alkahes such as potassium chromate or sodium chromate and in fused borax or cryohte, and reacts with carbon dioxide, hydrogen, ak, and steam. Sihcon carbide, resistant to chlorine below 700°C, reacts to form carbon and sihcon tetrachloride at high temperature. SiC dissociates in molten kon and the sihcon reacts with oxides present in the melt, a reaction of use in the metallurgy of kon and steel (qv). The dense, self-bonded type of SiC has good resistance to aluminum up to about 800°C, to bismuth and zinc at 600°C, and to tin up to 400°C a new sihcon nitride-bonded type exhibits improved resistance to cryohte. [Pg.465]

Manufacture The primary iadustrial compounds of chromium made directly from chromite ore are sodium chromate, sodium dichromate, and chromic acid. Secondary chromium compounds produced ia quantity include potassium dichromate, potassium chromate, and ammonium dichromate. [Pg.137]

The NIOSH recommended exposure limit for carcinogenic hexavalent chromium is 1 lg/m Cr(VI) as a 10-h TWA, and for noncarcinogenic Cr(VI) the 10-h TWA is 25 lg/m Cr(VI), including a 15-min maximum exposure of 50 lg/m Cr(VI). According to NIOSH, the noncarcinogenic Cr(VI) compounds are chromic acid and the chromates and dichromates of sodium, potassium, lithium, mbidium, cesium, and ammonia. NIOSH considers any hexavalent chromium compound that does not appear on the preceding Hst carcinogenic (145). [Pg.142]

Methyl 3-Carbethoxyoxy-7-keto-12a-hydroxycholanate. A solution of 4 g (8.6 mmoles) of crude methyl 3-carbethoxyoxycholate in 50 ml of acetic acid containing 10 g of sodium acetate trihydrate is treated gradually with a solution of 3 g (0.015 mole) of potassium chromate in 8 ml of water with shaking. After 10 hr at 25° the solution is diluted with water and the product collected by filtration to afford 3.9 g (97%) of methyl 3-carbethoxyoxy-7-keto-12a-hy-droxycholanate, mp 150-158°. Crystallization from methanol gives hard, compact needles or rods mp 157-158° 41°. The same substance is... [Pg.228]

Chrom-kali, n. (rotes) potassium dichromate (gelbes) potassium chromate, -karbid, n. chromium carbide, -lack, m. chrome lake, -leder, n. chrome leather, -leim, m. chrome gelatin chrome glue, -metall, n. chromium metal, -natron, n. (rotss) sodium dichromate (gelbes) sodium chromate, -nickel-stahl, m. chrome-nickel steel. [Pg.92]

Sodium Chloride [25]. Sodium chloride estimation is based on sodium titration. To 20 ml of a 1 1 mixture of toluene (xylene) isopropyl alcohol, add a 1-ml sample of oil-base mud, stirring constantly and 75 to 100 ml of distilled water. Add 8-10 drops of phenolphthalein indicator solution and titrate the mixture with H SO (N/10) until the red (pink) color, if any, disappears. Add 1 ml of potassium chromate to the mixture and titrate with 0.282N AgNO (silver nitrate, 1 ml = 0.001 g chloride ions) until the water portion color changes from yellow to orange. Then... [Pg.662]

Anion exchange resin. Proceed as in the previous experiment using 1.0 g, accurately weighed, of the air-dried strongly basic anion exchanger (e.g. Duolite A113, chloride form). Fill the 250 mL separatory funnel with ca 0.25M sodium nitrate solution, and allow this solution to drop into the column at the rate of about 2 mL per minute. Collect the effluent in a 500 mL conical flask, and titrate with standard 0.1M silver nitrate using potassium chromate as indicator. [Pg.208]

Weigh out accurately about 0.10 g of analytical grade sodium chloride and about 0.20 g of potassium bromide, dissolve the mixture in about 2.0 mL of water and transfer quantitatively to the top of the column with the aid of 0.3 M sodium nitrate. Pass 0.3 M sodium nitrate through the column at a flow rate of about 1 mL per minute and collect the effluent in 10 mL fractions. Transfer each fraction in turn to a conical flask, dilute with an equal volume of water, add 2 drops of 0.2M potassium chromate solution and titrate with standard 0.02M silver nitrate. [Pg.209]

The theory of the process is as follows. This is a case of fractional precipitation (Section 2.8), the two sparingly soluble salts being silver chloride (Xsol 1.2 x 10 10) and silver chromate (Kso] 1.7 x 10 12). It is best studied by considering an actual example encountered in practice, viz. the titration of, say, 0.1M sodium chloride with 0.1M silver nitrate in the presence of a few millilitres of dilute potassium chromate solution. Silver chloride is the less soluble salt and the initial chloride concentration is high hence silver chloride will be precipitated. At the first point where red silver chromate is just precipitated both salts will be in equilibrium with the solution. Hence ... [Pg.343]

Boron and silicon, whether they are on their own or combined, are used with sodium or potassium chromate to make pyrotechnic mixtures. [Pg.201]

Ammonium chromate Potassium chromate Chromium potassium sulphate Lithium chromate (yitomium trinitrate Sodium chromate Clsomium fV )oxide Lead chromate Strontium chromate 2nc ctvomate... [Pg.461]

The effects of various metal oxides and salts which promote ignition of amine-red fuming nitric acid systems were examined. Among soluble catalysts, copperQ oxide, ammonium metavanadate, sodium metavanadate, iron(III) chloride (and potassium hexacyanoferrate(II) with o-toluidine) are most effective. Of the insoluble materials, copper(II) oxide, iron(III) oxide, vanadium(V) oxide, potassium chromate, potassium dichromate, potassium hexacyanoferrate(III) and sodium pentacyanonitrosylferrate(II) were effective. [Pg.1573]

Catalytic elfects on the thermal decomposition and burning under nitrogen of the nitrate were determined for ammonium dichromate, potassium dichromate, potassium chromate, barium chloride, sodium chloride and potassium nitrate. Chromium(VI) salts are most effective in decomposition, and the halides salts during burning of the nitrate [1]. The effect of chromium compounds soluble in the molten nitrate, all of which promote decomposition of the latter, was studied (especially using ammonium dichromate) in kinetic experiments [2],... [Pg.1681]

All carbonates, phosphates, chromates, and silicates are insoluble, except those of sodium, potassium, and ammonium. An exception is MgCr04 which is soluble. [Pg.1451]

Materials Required Chloral hydrate 4.0 g sodium hydroxide (N) 30 ml sulphuric acid (N) phenolphthalein solution (1.0% w/v in 50% v/v alcohol) 0.1 N silver nitrate solution potassium chromate solution (5% w/v in water). [Pg.153]

Procedure Weigh accurately about 4 g of chloral hydrate and dissolve in 10 ml of DW and add 30 ml of N sodium hydroxide solution. Allow the resulting mixture to stand for 2 minutes, and then titrate with N sulphuric acid, employing phenolphthalein solution as indicator till a colour change from pink to colourless is achieved. Titrate the neutralized liquid thus obtained with 0.1 N silver nitrate using potassium chromate solution as indicator till precipitation of red chromate is obtained, Add, now 2/15th of the amount of 0.1 N silver nitrate used to the amount of N sulphuric acid used in the first titration and deduct the figure so obtained... [Pg.153]

Lead chromate is found naturally in minerals crocoite and phoenicochroite. It also is readily prepared by adding a soluble chromate such as sodium or potassium chromate to a solution of lead nitrate, lead acetate or other soluble lead(II) salt in neutral or slightly acidic solution ... [Pg.465]

Elemental composition Na 39.34%, Cl 60.66%. Aqueous solution may be analyzed for sodium by various instrumental methods (see Sodium) and for chloride ion by ion chromatography or chloride-ion selective electrode. Alternatively, the chloride ion may be measured by titration with a standard solution of silver nitrate using potassium chromate as indicator. Also, the salt can be identified by its physical properties. [Pg.857]

The acid-base properties of fused alkali nitrates were first noted when dichromate was added to fused sodium-potassium nitrate eutectic (/)/. Gaseous nitrogen dioxide and oxygen were slowly given off with the conversion of the dichromate to chromate. It was postulated that N02+ was formed as intermediate ... [Pg.219]

Synonym Neatsfoot Oil Necatorina Nechexane Neutral Ahhonium Pluoride Neutral Anhydrous Calcium Hypochlorite Neutral Lead Acetate Neutral Nicotine Sulfate Neutral Potassium Chromate Neutral Sodium Chromatetanhydrous Neutral Verdigris Nickel Acetate Nickel Acetate Tetrahyorate Nickel Ammonium Sulfate Nickel Ammonium Sulfate Hexahydrate Nickel Bromide Nickel Bromide Trihydrate Nickel Carbonyl Nickel Chloride Nickel Chloride Nickel Cyanide Nickel Iiu Fluoborate Nickel Fluoroborate Solution Nickel Fluoroborate Nickel Formate Nickel Formate Dihyorate Nickel Nitrate Nickel Nitrate Hexahydrate Nickel Sulfate Nickel Tetracarbokyl Nickelous Acetate Nickelous Sulfate Nicotine Nicotine Sulfate Nifos Nitralin Nitram O-Nitraniline P-Nitraniline Nitric Acid Nitric Acid, Aluminum Salt Nitric Acid, Iron (111) Salt Compound Name Oil Neatsfoot Carbon Tetrachloride Neohexane Ammonium Fluoride Calcium Hypochlorite Lead Acetate Nicotine Sulfate Potassium Chromate Sodium Chromate Copper Acetate Nickel Acetate Nickel Acetate Nickel Ammonium Sulfate Nickel Ammonium Sulfate Nickel Bromide Nickel Bromide Nickel Carbonyl Nickel Chloride Nickel Chloride Nickel Cyanide Nickel Fluoroborate Nickel Fluoroborate Nickel Fluoroborate Nickel Formate Nickel Formate Nickel Nitrate Nickel Nitrate Nickel Sulfate Nickel Carbonyl Nickel Acetate Nickel Sulfate Nicotine Nicotine Sulfate Tetraethyl Pyrophosphate Nitralin Ammonium Nitrate 2-Nitroaniline 4-Nitroaniline Nitric Acid Aluminum Nitrate Ferric Nitrate... [Pg.69]

Chlorides, bromides, and iodides can be quantitatively determined by treatment with silver nitrate, and, with suitable precautions, the precipitated halide is washed, dried, and weighed. Chlorides in neutral soln. can be determined by F. Mohr s volumetric process 27 by titration with a standard soln. of silver nitrate with a little potassium chromate or sodium phosphate as indicator. When all the chloride has reacted with the silver nitrate, any further addition of this salt gives a yellow coloration with the phosphate, and a red coloration with the chromate. In J. Volhard s volumetric process, the chloride is treated with an excess of an acidified soln. of silver nitrate of known concentration. The excess of silver nitrate is filtered from the precipitated chloride, and titrated with a standard soln. of ammonium thiocyanate, NH4CN8—a little ferric alum is used as indicator. When the silver nitrate is all converted into thiocyanate AgN03-fNH4CNS=AgCNS +NH4NOS, the blood-red coloration of ferric thiocyanate appears. [Pg.211]

In a large (2 1.) beaker, suspend three lead electrode plates, cut from sheet lead, about 1.5 cm. apart. Connect the middle plate as anode and the two outer ones as cathodes. In the beaker place an electrolyte consisting of 10 g. of sodium nitrate and 3 g. of potassium chromate dissolved in 1 1. of water. Prepare a solution of 7.5 g. of chromic anhydride, Cr03, in about 20 cc. of water and from a dropping funnel allow this solution to drop into the electrolyte at a rate of about half its volume in 2 amp.-hr. during the electrolysis to maintain the chromate concentration. In a specific experiment, the anode surface was 85 sq. cm. on each side of the anode the most favorable current density was 0.0059 amp. per square centimeter, which for this cell made a current of 1 amp. with a voltage across the terminals of 2.3 volts. [Pg.55]

A 6 per cent solution of potassium chromate is made just alkaline with sodium hydroxide. The containing beaker is then placed in a freezing mixture, and the chromate stirred until the solution has become cold. A slow current of hydrogen sulfide is then passed through the cold solution until it is saturated. The solution is then allowed to come to room temperature. [Pg.169]

Quantitative Determination. Dissolve I gin. of potassium chromate in water and dilute to 100 re. Introduce 10 cc. of this solution into a glass-stoppered llask of about 400 cc. capacity, add 2 gin. of potassium iodide, 5 cc. of 10 per cent, sulphuric acid, and 350 cc. of thoroughly boiled water, ntrale the liberated iodine with deeinoriual sodium thiosulphate, using starch solution as the indicator. [Pg.163]


See other pages where Sodium potassium chromates is mentioned: [Pg.1182]    [Pg.288]    [Pg.141]    [Pg.344]    [Pg.873]    [Pg.171]    [Pg.86]    [Pg.124]    [Pg.273]    [Pg.343]    [Pg.323]    [Pg.389]    [Pg.288]    [Pg.120]    [Pg.256]    [Pg.200]    [Pg.982]    [Pg.382]    [Pg.166]    [Pg.340]    [Pg.374]    [Pg.51]   
See also in sourсe #XX -- [ Pg.60 ]




SEARCH



Potassium chromate

Potassium sodium

Sodium chromate

© 2024 chempedia.info