Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium physiology

See also Antioxidants Diet and Antioxidant Defense Observationai Studies Intervention Studies. Coronary Heart Disease Lipid Theory. Dietary Fiber Role in Nutritional Management of Disease. Fatty Acids Monounsaturated Omega-3 Polyunsaturated Omega-6 Polyunsaturated Saturated. Fish. Folic Acid. Potassium. Sodium Physiology Salt Intake and Health. Vegetarian Diets. [Pg.129]

C7H9N402- M.p. 337 C, an alkaloid obtained from cacao seeds or prepared synthetically. Constitutionally it is similar to caffeine, and is also a weak base. It is usually administered as the sodium compound combined with either sodium ethanoate or sodium salicylate, and is employed almost entirely as a diuretic. Physiologically theobromine resembles caffeine, but its effect on the central nervous system is less, while its action on the kidneys, is more pronounced. [Pg.392]

A furtlier problem is tire influence of tire ratlier unusual—from tire physiological viewpoint—salt conditions necessary for crystallization. It should not be presumed tliat proteins embedded in a crystal are in tlieir most common native stmcture. It is well known tliat, witli tire exception of sodium or potassium chloride, which are not very useful for inducing crystallization, salts change key protein parameters such as tire melting temperature [19]. [Pg.2818]

Ionic bonding was proposed by the German physicist Walther Kossel in 1916 in or der to explain the ability of substances such as molten sodium chloride to conduct an electric current He was the son of Albrecht Kossel winner of the 1910 Nobel Prize in physiology or medi cine for early studies in nu cleic acids... [Pg.12]

Toxicity. Fluoroborates are excreted mostly in the urine (22). Sodium fluoroborate is absorbed almost completely into the human bloodstream and over a 14-d experiment all of the NaBF ingested was found in the urine. Although the fluoride ion is covalently bound to boron, the rate of absorption of the physiologically inert BF from the gastrointestinal tract of rats exceeds that of the physiologically active simple fluorides (23). [Pg.165]

In the days of alchemy and the phlogiston theory, no system of nomenclature that would be considered logical ia the 1990s was possible. Names were not based on composition, but on historical association, eg, Glauber s salt for sodium sulfate decahydrate and Epsom salt for magnesium sulfate physical characteristics, eg, spirit of wiae for ethanol, oil of vitriol for sulfuric acid, butter of antimony for antimony trichloride, Hver of sulfur for potassium sulfide, and cream of tartar for potassium hydrogen tartrate or physiological behavior, eg, caustic soda for sodium hydroxide. Some of these common or trivial names persist, especially ia the nonchemical Hterature. Such names were a necessity at the time they were iatroduced because the concept of molecular stmcture had not been developed, and even elemental composition was incomplete or iadeterminate for many substances. [Pg.115]

Potassium is required for enzyme activity in a few special cases, the most widely studied example of which is the enzyme pymvate kinase. In plants it is required for protein and starch synthesis. Potassium is also involved in water and nutrient transport within and into the plant, and has a role in photosynthesis. Although sodium and potassium are similar in their inorganic chemical behavior, these ions are different in their physiological activities. In fact, their functions are often mutually antagonistic. For example, increases both the respiration rate in muscle tissue and the rate of protein synthesis, whereas inhibits both processes (42). [Pg.536]

This, on reduction with zinc dust and acetic acid, yielded the corresponding oxime, which was further reduced by sodium amalgam to -3 4 5-trimethoxyphenylethylamine, CgHjj(OMe)3. CH. CH. NHg, and this proved to be identical with mezcaline (I). Like the latter, it behaves on analysis as if it contained the grouping —NHMe but this had already been disproved by Heffter. Interest in the remarkable physiological properties attributed to mezcaline has led to many syntheses of this alkaloid and of its isomerides and analogues. ... [Pg.156]

Similarly, photooxidation of dihydrocoralyne (108) in hot methanol at pH 8, subsequent addition of sodium methoxide and additional irradiation yielded 6,7-dimethoxyisoquinolone and 3-methyl-3,5,6-trimetho-xyphthalide via the betainic intermediate 109 (77H45) (Scheme 39). It was demonstrated earlier that dihydrocoralyne is oxidized to this betaine in quantitative yields under physiological conditions (76H153). The autoox-idative degradation of the mesomeric betaine was rationalized by the addition of singlet oxygen. [Pg.103]

It has been found that epinephrine solutions having a physiological pH and which are stable for months in storage can be prepared by combining with the epinephrine a small amount of sodium bisulfite, boric acid, and oxine (8-hydroxy-quinoline) hereinafter called 8-quinoli-nol and adjusting the pH with an alkali, such as sodium hydroxide, to the desired pH. [Pg.563]

The solutions can contain from 0.1 to 4% epinephrine. The pHs of the solutions can be adjusted to any value within the physiological range, I.e., from 6.5 to 8.5 using any convenient alkali such as sodium hydroxide. [Pg.563]

The blood-brain barrier (BBB) forms a physiological barrier between the central nervous system and the blood circulation. It consists of glial cells and a special species of endothelial cells, which form tight junctions between each other thereby inhibiting paracellular transport. In addition, the endothelial cells of the BBB express a variety of ABC-transporters to protect the brain tissue against toxic metabolites and xenobiotics. The BBB is permeable to water, glucose, sodium chloride and non-ionised lipid-soluble molecules but large molecules such as peptides as well as many polar substances do not readily permeate the battier. [Pg.272]

Vanadate, dioxybis(oxamato)-bond-length ratios, 1,57 Vanadate, heptacyano-potassium salt structure, I, 72 Vanadate, hexafluoro-dipotassium salt history, I, 21 potassium salt history, 1,21 tripotassium salt history, 1,21 Vanadate, pentachloro-stereochemistry, 1,40 Vanadate, pentafluorooxy-stereochemistry, I, 50 Vanadates biochemistry, 3,456 calcium/magnesium ATPase inhibition, 6, 567 competition with phosphates physiology, 6,665 protonation, 3,1026 sodium pump, 6, 557 in uranium purification from ore, 6, 899 Vanadates, hexafluoro-, 3. 482,531 Vanadates, oxoperoxo-, 3,501 Vanadates, pentacarbonyl-, 3, 457 Vanadium biology, 6,665 determination, 1. 548 extraction... [Pg.243]


See other pages where Sodium physiology is mentioned: [Pg.330]    [Pg.331]    [Pg.332]    [Pg.333]    [Pg.334]    [Pg.347]    [Pg.330]    [Pg.331]    [Pg.332]    [Pg.333]    [Pg.334]    [Pg.347]    [Pg.528]    [Pg.87]    [Pg.458]    [Pg.462]    [Pg.462]    [Pg.185]    [Pg.404]    [Pg.75]    [Pg.426]    [Pg.160]    [Pg.432]    [Pg.288]    [Pg.396]    [Pg.514]    [Pg.632]    [Pg.279]    [Pg.448]    [Pg.1599]    [Pg.205]    [Pg.273]    [Pg.326]    [Pg.327]    [Pg.475]    [Pg.547]    [Pg.809]    [Pg.813]    [Pg.872]    [Pg.928]    [Pg.931]    [Pg.1066]    [Pg.1308]   
See also in sourсe #XX -- [ Pg.443 , Pg.456 , Pg.572 , Pg.573 ]




SEARCH



Sodium physiological importance

© 2024 chempedia.info