Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phosphates physiology

Vanadate, dioxybis(oxamato)-bond-length ratios, 1,57 Vanadate, heptacyano-potassium salt structure, I, 72 Vanadate, hexafluoro-dipotassium salt history, I, 21 potassium salt history, 1,21 tripotassium salt history, 1,21 Vanadate, pentachloro-stereochemistry, 1,40 Vanadate, pentafluorooxy-stereochemistry, I, 50 Vanadates biochemistry, 3,456 calcium/magnesium ATPase inhibition, 6, 567 competition with phosphates physiology, 6,665 protonation, 3,1026 sodium pump, 6, 557 in uranium purification from ore, 6, 899 Vanadates, hexafluoro-, 3. 482,531 Vanadates, oxoperoxo-, 3,501 Vanadates, pentacarbonyl-, 3, 457 Vanadium biology, 6,665 determination, 1. 548 extraction... [Pg.243]

Inositol Phosphates Their Chemistry, Biochemistry and Physiology, by D.J. Cosgrove... [Pg.281]

This reaction is strongly exergonic and AG° at 37°C is —42.8 kj/mol. Physiological concentrations of phosphocreatine, creatine, and inorganic phosphate are normally between 1 mMand 10 mM. Assuming 1 mMconcentrations and using Equation (3.12), the AG for the hydrolysis of phosphocreatine is... [Pg.65]

The biologically active form of vitamin Bg is pyridoxal-5-phosphate (PEP), a coenzyme that exists under physiological conditions in two tautomeric forms (Figure 18.25). PLP participates in the catalysis of a wide variety of reactions involving amino acids, including transaminations, a- and /3-decarboxylations, /3- and ") eliminations, racemizations, and aldol reactions (Figure 18.26). Note that these reactions include cleavage of any of the bonds to the amino acid alpha carbon, as well as several bonds in the side chain. The remarkably versatile chemistry of PLP is due to its ability to... [Pg.594]

It has been said that God created an organism especially adapted to help the biologist find an answer to every question about the physiology of living systems if this is so it must be concluded that pyridoxal phosphate was created to provide satisfaction and enlightenment to those enzymologists and chemists who enjoy pushing electrons, for no other coenzyme is involved in such a wide variety of reactions, in both enzyme and model systems, which can be reasonably interpreted in terms of the chemical properties of the coenzyme. Most of... [Pg.594]

The hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate (Eigure 23.7), like all phosphate ester hydrolyses, is a thermodynamically favorable (exergonic) reaction under standard-state conditions (AG° = —16.7 kj/mol). Under physiological conditions in the liver, the reaction is also exergonic (AG = —8.6 kJ/mol). Fructose-1,6-bisphosphatase is an allosterically regulated enzyme. Citrate stimulates bisphosphatase activity, hut fructose-2,6-bisphosphate is a potent allosteric inhibitor. / MP also inhibits the bisphosphatase the inhibition by / MP is enhanced by fructose-2,6-bisphosphate. [Pg.747]

Acyloxybenzyl esters were designed to be released under physiological conditions. Porcine liver carboxyesterase efficiently releases the phosphate by acetate hydrolysis and quinonemethide formation. In a diester, the first ester is cleaved faster than the second. ... [Pg.685]

PTH is the most important regulator of bone remodelling and calcium homeostasis. PTH is an 84-amino acid polypeptide and is secreted by the parathyroid glands in response to reductions in blood levels of ionised calcium. The primary physiological effect of PTH is to increase serum calcium. To this aim, PTH acts on the kidney to decrease urine calcium, increase mine phosphate, and increase the conversion of 25-OH-vitamin D to l,25-(OH)2-vitamin D. PTH acts on bone acutely to increase bone resorption and thus release skeletal calcium into the circulation. However, due to the coupling of bone resorption and bone formation, the longer-term effect of increased PTH secretion is to increase both bone resorption and bone formation. [Pg.279]

Rizzoli R, Bonjour JP (2006) Physiology of calcium and phosphate homeostasis. In Dynamics of Bone and Cartilage Metabolism, 2nd edn. Seibel MJ, Robins SP, Bilezikian JP (eds), San Diego, Academic Press,345-360... [Pg.283]

Some phosphorus-containing surfactants have bacteriostatic properties. In combination with their physiological acceptance they are used in cosmetics and pharmaceuticals. In mutanase oral anticarie compositions the combination of alkyl phosphates and nonionic surfactants stabilizes mutanase. A dentifrice useful for prevention of dental caries contains 0.5% sodium lauryl phosphate and 1.5% polyoxyethylene (20) sorbitan monooleate [222]. [Pg.610]

The development of monoalkyl phosphate as a low skin irritating anionic surfactant is accented in a review with 30 references on monoalkyl phosphate salts, including surface-active properties, cutaneous effects, and applications to paste and liquid-type skin cleansers, and also phosphorylation reactions from the viewpoint of industrial production [26]. Amine salts of acrylate ester polymers, which are physiologically acceptable and useful as surfactants, are prepared by transesterification of alkyl acrylate polymers with 4-morpholinethanol or the alkanolamines and fatty alcohols or alkoxylated alkylphenols, and neutralizing with carboxylic or phosphoric acid. The polymer salt was used as an emulsifying agent for oils and waxes [70]. Preparation of pharmaceutical liposomes with surfactants derived from phosphoric acid is described in [279]. Lipid bilayer vesicles comprise an anionic or zwitterionic surfactant which when dispersed in H20 at a temperature above the phase transition temperature is in a micellar phase and a second lipid which is a single-chain fatty acid, fatty acid ester, or fatty alcohol which is in an emulsion phase, and cholesterol or a derivative. [Pg.611]

Driessens, F.C.M., van Dijk, J.W.E. and Borrgreven, J.M.P.M. 1978 Biological calcium phosphates and their role in the physiology ofbone and dental tissues. 1. Composition and solubility of calcium phosphates. Calcified Tissue Research 26 127-137. [Pg.112]

Figure 6.5. 5 0 of tooth enamel phosphate versus body size (log scale) for Kenyan fauna analyzed in this study. With the exception of the dikdik, there is a general association between the two variables. In contrast to tbe body-size model (Bryant and Froelicb 1995) wbicb predicts a range of values close to l%o, however, the measured range in 8 0 values for species averages is 5%a. This and the anomalous values for the dikdik reflect physiological and behavioral adaptations by these desert adapted species. [Pg.130]

Since our backbone 2 aPNA incorporates six Lys residues in its peptide sequence and is cationic at a physiological pH, we were optimistic that this aPNA would be taken up into cells without the need for any external carrier system. To answer the simple question of whether b2 aPNAs are intemahzed, a standard fluorescence microscopy experiment was performed to see if whole cells that were incubated with a fluorescent-labeled aPNA would internahze labeled material [70]. Chinese Hamster Ovary (CHO) cells in culture were incubated with BODIPY-la-beled TCCCT(b2) at 37 °C for various periods of time. Following incubation, the cells were rinsed in phosphate-buffered sahne (PBS), fixed with 4% formaldehyde at ambient temperature for 20 min, then washed with PBS and stored in a refrigerator until examined by fluorescence microscopy. [Pg.215]

This reaction is followed by another phosphorylation with ATP catalyzed by the enzyme phosphofructoki-nase (phosphofructokinase-1), forming fructose 1,6-bisphosphate. The phosphofructokinase reaction may be considered to be functionally irreversible under physiologic conditions it is both inducible and subject to allosteric regulation and has a major role in regulating the rate of glycolysis. Fructose 1,6-bisphosphate is cleaved by aldolase (fructose 1,6-bisphosphate aldolase) into two triose phosphates, glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Glyceraldehyde 3-phosphate and dihydroxyacetone phosphate are inter-converted by the enzyme phosphotriose isomerase. [Pg.137]

Muscle phosphorylase is distinct from that of Hver. It is a dimer, each monomer containing 1 mol of pyridoxal phosphate (vitamin Bg). It is present in two forms phos-phoiylase a, which is phosphorylated and active in either the presence or absence of 5 -AMP (its allosteric modifier) and phosphorylase h, which is dephosphorylated and active only in the presence of 5 -AMP. This occurs during exercise when the level of 5 -AMP rises, providing, by this mechanism, fuel for the muscle. Phosphorylase a is the normal physiologically active form of the enzyme. [Pg.147]

Wood T Physiological functions of the pentose phosphate pathway. Cell Biol Funct 1986 4 24l. [Pg.172]


See other pages where Phosphates physiology is mentioned: [Pg.7222]    [Pg.7222]    [Pg.419]    [Pg.441]    [Pg.385]    [Pg.87]    [Pg.263]    [Pg.415]    [Pg.5]    [Pg.495]    [Pg.51]    [Pg.78]    [Pg.619]    [Pg.747]    [Pg.748]    [Pg.750]    [Pg.264]    [Pg.125]    [Pg.410]    [Pg.139]    [Pg.71]    [Pg.592]    [Pg.1036]    [Pg.193]    [Pg.171]    [Pg.385]    [Pg.132]    [Pg.245]    [Pg.227]    [Pg.223]    [Pg.136]   
See also in sourсe #XX -- [ Pg.665 ]

See also in sourсe #XX -- [ Pg.665 ]

See also in sourсe #XX -- [ Pg.6 , Pg.665 ]




SEARCH



© 2024 chempedia.info