Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Sodium alcoholate solutions

Water sodium alcoholate solution "FrederWng" (cast-incoil) agitated, baffled 80... [Pg.596]

Piperitone is of considerable technical im portance. It is a colourless oil of a pleasant peppermint-like smell. (-)-Piperilone has b.p. 109-5-110-5 C/I5mm. Piperitone yields thymol on oxidation with FeCl. On reduction with hydrogen in presence of a nickel catalyst it yields menthone. On reduction with sodium in alcoholic solution all forms of piperitone yield racemic menthols and womenthols together with some racemic a-phel)andrene. [Pg.316]

Colourless crystals m.p. 122 C. It is prepared by reducing an alcoholic solution of xanthone with sodium amalgam. [Pg.428]

Although the acetylation of alcohols and amines by acetic anhydride is almost invariably carried out under anhydrous conditions owing to the ready hydrolysis of the anhydride, it has been shown by Chattaway (1931) that phenols, when dissolved in aqueous sodium hydroxide solution and shaken with acetic anhydride, undergo rapid and almost quantitative acetylation if ice is present to keep the temperature low throughout the reaction. The success of this method is due primarily to the acidic nature of the phenols, which enables them to form soluble sodium derivatives, capable of reacting with the acetic... [Pg.109]

Place I ml. of benzyl alcohol in a boiling-tube and add 6 ml. of 10% sodium hydroxide solution add also 6 ml. of water to moderate the subsequent reaction, otherwise the rise in temperature may cause hydrolysis of some of the ester produced. Now add r-q g. of finely powdered />-nitrobenzoyl chloride, and shake the well-corked tube vigorously. The mixture becomes warm, and the solid ester rapidly... [Pg.246]

Zinc cyanide. Solutions of the reactants are prepared by dis solving 100 g. of technical sodium cyanide (97-98 per cent. NaCN) in 125 ml. of water and 150 g. of anhydrous zinc chloride in the minimum volume of 50 per cent, alcohol (1). The sodium cyanide solution is added rapidly, with agitation, to the zinc chloride solution. The precipitated zinc cyanide is filtered off at the pump, drained well, washed with alcohol and then with ether. It is dried in a desiccator or in an air bath at 50°, and preserved in a tightly stoppered bottle. The yield is almost quantitative and the zinc cyanide has a purity of 95-98 per cent. (2). It has been stated that highly purified zinc cyanide does not react in the Adams modification of the Gattermann reaction (compare Section IV,12l). The product, prepared by the above method is, however, highly satisfactory. Commercial zinc cyanide may also be used. [Pg.201]

Add 0-5-1 ml. of the alcohol, cork the flask loosely, and heat on a water bath for 10 minutes secondary and tertiary alcohols require longer heating (up to 30 minutes). Cool the mixture, add 10 ml. of 5 per cent, (or saturated) sodium bicarbonate solution, break up the resulting solid ester with a stirring rod (alternatively, stir until crystalline), and filter at the pump wash with a little sodium bicarbonate solution, followed by water, and then suck as dry as possible. Dissolve the crude... [Pg.262]

Benzoates. Alcohols react with benzoyl chloride in the presence of pyridine or of sodium hydroxide solution to produce esters of benzoic acid ... [Pg.263]

For alcohols of b.p. below 150°, mix 0- 5 g. of 3-nitrophthalic anhydride (Section VII,19) and 0-5 ml. (0-4 g.) of the dry alcohol in a test-tube fitted with a short condenser, and heat under reflux for 10 minutes after the mixture liquefies. For alcohols boiling above 150°, use the same quantities of reactants, add 5 ml. of dry toluene, heat under reflux until all the anhydride has dissolved and then for 20 minutes more remove the toluene under reduced pressure (suction with water pump). The reaction product usually solidifies upon cooling, particularly upon rubbing with a glass rod and standing. If it does not crystallise, extract it with dilute sodium bicarbonate solution, wash the extract with ether, and acidify. Recrystallise from hot water, or from 30 to 40 per cent, ethanol or from toluene. It may be noted that the m.p. of 3-nitrophthalic acid is 218°. [Pg.265]

Reflux a mixture of 68 g. of anhydrous zinc chloride (e.g., sticks), 40 ml. (47 -5 g.) of concentrated hydrochloric acid and 18-5 g. (23 ml.) of sec.-butyl alcohol (b.p. 99-100°) in the apparatus of Fig. 777, 25, 1 for 2 hours. Distil oflF the crude chloride untU the temperature rises to 100°. Separate the upper layer of the distillate, wash it successively with water, 5 per cent, sodium hydroxide solution and water dry with anhydrous calcium chloride. Distil through a short column or from a Claisen flask with fractionating side arm, and collect the fraction of b.p. 67-70° some high boiling point material remains in the flask. Redistil and collect the pure cc. butyl chloride at 67-69°. The yield is 15 g. [Pg.273]

In a 250 ml. separatory funnel place 25 g. of anhydrous feri.-butyl alcohol (b.p. 82-83°, m.p. 25°) (1) and 85 ml. of concentrated hydrochloric acid (2) and shake the mixture from time to time during 20 minutes. After each shaking, loosen the stopper to relieve any internal pressure. Allow the mixture to stand for a few minutes until the layers have separated sharply draw off and discard the lower acid layer. Wash the halide with 20 ml. of 5 per cent, sodium bicarbonate solution and then with 20 ml. of water. Dry the preparation with 5 g. of anhydrous calcium chloride or anhydrous calcium, sulphate. Decant the dried liquid through a funnel supporting a fluted Alter paper or a small plug of cotton wool into a 100 ml. distilling flask, add 2-3 chips of porous porcelain, and distil. Collect the fraction boiling at 49-51°. The yield of feri.-butyl chloride is 28 g. [Pg.276]

Mix 40 g. (51 ml.) of isopropyl alcohol with 460 g. (310 ml.) of constant boiling point hydrobromic acid in a 500 ml. distilling flask, attach a double surface (or long Liebig) condenser and distil slowly (1-2 drops per second) until about half of the liquid has passed over. Separate the lower alkyl bromide layer (70 g.), and redistil the aqueous layer when a further 7 g. of the crude bromide will be obtained (1). Shake the crude bromide in a separatory funnel successively with an equal volume of concentrated hydrochloric acid (2), water, 5 per cent, sodium bicarbonate solution, and water, and dry with anhydrous calcium chloride. Distil from a 100 ml. flask the isopropyl bromide passes over constantly at 59°. The yield is 66 g. [Pg.277]

Allyl Bromide. Introduce into a 1-litre three-necked flask 250 g. (169 ml.) of 48 per cent, hydrobromic acid and then 75 g. (40-5 ml.) of concentrated sulphuric acid in portions, with shaking Anally add 58 g. (68 ml.) of pure allyl alcohol (Section 111,140). Fit the flask with a separatory funnel, a mechanical stirrer and an efficient condenser (preferably of the double surface type) set for downward distillation connect the flask to the condenser by a wide (6-8 mm.) bent tube. Place 75 g. (40 5 ml.) of concentrated sulphuric acid in the separatory funnel, set the stirrer in motion, and allow the acid to flow slowly into the warm solution. The allyl bromide will distil over (< 30 minutes). Wash the distillate with 5 per cent, sodium carbonate solution, followed by water, dry over anhydrous calcium chloride, and distil from a Claisen flask with a fractionating side arm or through a short column. The yield of allyl bromide, b.p. 69-72°, is 112 g. There is a small high-boiling fraction containing propylene dibromide. [Pg.280]

Picrates of p-naphthyl alkyl ethers. Alkyl halides react with the sodium or potassium derivative of p-naphthol in alcoholic solution to yield the corresponding alkyl p-naphthyl ethers (which are usually low m.p. solids) and the latter are converted by alcoholic picric acid into the crystalline picrates ... [Pg.292]

Mix together 1 0 g. of pure p-naphthol and the theoretical quantity of 50 per cent, potassium hydroxide solution, add 0-5 g. of the halide, followed by sufficient rectified spirit to produce a clear solution. For alkyl chlorides, the addition of a little potassium iodide is recommended. Heat the mixture under reflux for 15 minutes, and dissolve any potassium halide by the addition of a few drops of water. The p-naphthyl ether usually crystallises out on cooling if it does not, dilute the solution with 10 per cent, sodium hydroxide solution untU precipitation occurs. Dissolve the p-naphthyl ether in the minimum volume of hot alcohol and add the calculated quantity of picric acid dissolved in hot alcohol. The picrate separates out on cooling. Recrystallise it from rectified spirit. [Pg.292]

Alkyl thiocyanates. From potassium or sodium thiocyanate and the alkyl halide in alcoholic solution, for example ... [Pg.302]

An alternative method for isolating the n-butyl ether utilises the fact that n-butyl alcohol is soluble in saturated calcium chloride solution whilst n-butyl ether is slightly soluble. Cool the reaction mixture in ice and transfer to a separatory fimnel. Wash cautiously with 100 ml. of 2-5-3N sodium hydroxide solution the washings should be alkaline to litmus. Then wash with 30 ml. of water, followed by 30 ml. of saturated calcium chloride solution. Dry with 2-3 g. of anhydrous calcium chloride, filter and distil. Collect the di-n-butyl ether at 139-142°. The yield is 20 g. [Pg.313]

Di-n-hexyl ether. Use 50 g. (61 ml.) of n-hexyl alcohol (b.p. 156-157°) and 6 g. (3-5 ml.) of concentrated sulphuric acid, and heat until the temperature rises to 180°. Pour the reaction mixture into water, separate the upper layer, wash it twice with 5 per cent, sodium hydroxide solution, then with water, and dry over anhydrous potassium carbonate. Distil from a 50 ml. Claisen flask, and collect the fractions of b.p. (i) 160-221° (17 g.), and (u) 221-223° (17 g.). Reflux fraction (i) with 4 g. of sodium and distil from the excess of sodium 9 - 5 g. of fairly prure n-hexyl ether, fraction (iii), are thus obtained. Combine fractions (ii) and (iii) and distil from a little sodium collect the pure n-hexyl ether (19 g.) at 221 - 5-223°. [Pg.313]

Add 1 ml. of the alcohol-free ether to 0-1-0-15 g. of finely-powdered anhydrous zinc chloride and 0 5 g. of pure 3 5-dinitrobenzoyl chloride (Section 111,27,1) contained in a test-tube attach a small water condenser and reflux gently for 1 hour. Treat the reaction product with 10 ml. of 1-5N sodium carbonate solution, heat and stir the mixture for 1 minute upon a boiling water bath, allow to cool, and filter at the pump. Wash the precipitate with 5 ml. of 1 5N sodium carbonate solution and twice with 6 ml. of ether. Dry on a porous tile or upon a pad of filter paper. Transfer the crude ester to a test-tube and boil it with 10 ml. of chloroform or carbon tetrachloride filter the hot solution, if necessary. If the ester does not separate on cooling, evaporate to dryness on a water bath, and recrystallise the residue from 2-3 ml. of either of the above solvents. Determine the melting point of the resulting 3 5 dinitro benzoate (Section 111,27). [Pg.316]

The experimental procedure to be followed depends upon the products of hydrolysis. If the alcohol and aldehyde are both soluble in water, the reaction product is divided into two parts. One portion is used for the characterisation of the aldehyde by the preparation of a suitable derivative e.g., the 2 4-dinitrophenylhydrazone, semicarbazone or di-medone compound—see Sections 111,70 and 111,74). The other portion is employed for the preparation of a 3 5-dinitrobenzoate, etc. (see Section 111,27) it is advisable first to concentrate the alcohol by dis tillation or to attempt to salt out the alcohol by the addition of solid potassium carbonate. If one of the hydrolysis products is insoluble in the reaction mixture, it is separated and characterised. If both the aldehyde and the alcohol are insoluble, they are removed from the aqueous layer separation is generally most simply effected with sodium bisulphite solution (compare Section Ill,74),but fractional distillation may sometimes be employed. [Pg.328]

Prepare 10 ml. of saturated sodium bisulphite solution and add 4 ml. of the aldehyde shake thoroughly and observe the rise in temperature. Filter the crystalline precipitate at the pump, wash it with a little alcohol, followed by ether, and allow it to dry. [Pg.332]

Dissolve 1 g. of the ketomethylene compound and 1 1 g. or 2 2 g. of pure benzaldehyde (according as to whether the compound may be regarded as RCOCHjR or as RCHjCOCHjR ) in about 10 ml. of rectified (or methylated) spirit, add 0 5 ml. of 5.N -sodium hydroxide solution, shake and allow the mixture to stand for about an hour at room temperature. The benzylidene derivative usually crystallises out or will do so upon scratching the walls of the vessel with a glass rod. Filter off the solid, wash it with a little cold alcohol, and recrystallise it from absolute alcohol (or absolute industrial spirit). [Pg.345]


See other pages where Sodium alcoholate solutions is mentioned: [Pg.162]    [Pg.38]    [Pg.11]    [Pg.54]    [Pg.54]    [Pg.162]    [Pg.38]    [Pg.11]    [Pg.54]    [Pg.54]    [Pg.163]    [Pg.166]    [Pg.219]    [Pg.233]    [Pg.336]    [Pg.512]    [Pg.170]    [Pg.203]    [Pg.250]    [Pg.251]    [Pg.264]    [Pg.273]    [Pg.279]    [Pg.281]    [Pg.297]    [Pg.311]    [Pg.327]    [Pg.356]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



Alcohol solution

Alcoholic solutions

Sodium alcohol

Sodium alcoholate

Sodium solutions

© 2024 chempedia.info