Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Single crystals structure reliability

The results of this crystal structure analysis should then be viewed as having a reliability intermediate between standard single crystal structures where R is often 0.1, and crystalline polymer structures where only qualitative agreement is expected between observed and calculated structure factors. [Pg.257]

In the case of poly (oligomethylene terephthalates) the small energy differences between trans and gauche conformations in the oligomethylene part makes the deliberate study of small model compounds essential. With the knowledge of the single crystal structures of such model compounds the correct polymer structure is found with much greater reliability. [Pg.408]

Revised Values of Double-Bond Covalent Radii.—This investigation has led to the value 1.34 A. for the carbon-carbon double-bond distance, 0.04 A. less than the value provided by the table of covalent radii.111 4 Five years ago, when this table was extended to multiple bonds, there were few reliable experimental data on which the selected values for double-bond and triple-bond radii could be based. The single-bond radii were obtained -from the study of a large number of interatomic distances found experimentally by crystal-structure and spectroscopic methods. The spectroscopic value of the triple-bond radius of nitrogen (in N2) was found to bear the ratio 0.79 to the single-bond radius, and this ratio was as-... [Pg.654]

X-Ray diffraction from single crystals is the most direct and powerful experimental tool available to determine molecular structures and intermolecular interactions at atomic resolution. Monochromatic CuKa radiation of wavelength (X) 1.5418 A is commonly used to collect the X-ray intensities diffracted by the electrons in the crystal. The structure amplitudes, whose squares are the intensities of the reflections, coupled with their appropriate phases, are the basic ingredients to locate atomic positions. Because phases cannot be experimentally recorded, the phase problem has to be resolved by one of the well-known techniques the heavy-atom method, the direct method, anomalous dispersion, and isomorphous replacement.1 Once approximate phases of some strong reflections are obtained, the electron-density maps computed by Fourier summation, which requires both amplitudes and phases, lead to a partial solution of the crystal structure. Phases based on this initial structure can be used to include previously omitted reflections so that in a couple of trials, the entire structure is traced at a high resolution. Difference Fourier maps at this stage are helpful to locate ions and solvent molecules. Subsequent refinement of the crystal structure by well-known least-squares methods ensures reliable atomic coordinates and thermal parameters. [Pg.312]

Reliable information on the thermodynamic stability of group 13/15 adducts is usually obtained by gas phase measurements. However, due to the lability of stibine and bismuthine adducts in the gas phase toward dissociation, temperature-dependent H-NMR studies are also useful for the determination of their dissociation enthalpies in solution [41b], We focussed on analogously substituted adducts t-BusAl—E(f-Pr)3 (E = P 9, As 10, Sb 11, Bi 12) since they have been fully characterized by single crystal X-ray diffraction, allowing comparisons of their thermodynamic stability in solution with structural trends as found in their solid state structures. [Pg.126]

Reflection intensity in the SAED negatives was measured with a microdensitometer. The refinement of the structure analysis was performed by the least square method over the intensity data (25 reflections) thus obtained. A PPX single-crystal is a mosaic crystal which gives an "N-pattem". Therefore we used the 1/d hko as the Lorentz correction factor [28], where d hko is the (hkO) spacing of the crystal. In this case, the reliability factor R was 31%, and the isotropic temperature factor B was 0.076nm. The molecular conformation of the P-form took after that of the P-form since R was minimized with this conformation benzene rings are perpendicular to the trans-zigzag plane of -CH2-CH2-. [Pg.465]

The theoretician uses these programs to predict structure, either of single molecules or of assemblages of molecules, using X-ray or NMR data, when available, to test his predictions (13-15). It has been known for a long time that even the earlier molecular mechanics programs can predict the structures of certain types of molecules with excellent reliability. For the cyclic alkanes, an accuracy comparable to that of the best X-ray crystal structure analysis can be obtained. In fact, the method is more widely applicable since neither compound nor crystals are necessary (1 . [Pg.21]

The traditional approach for structure solution follows a close analogy to the analysis of single-crystal XRD data, in that the intensities 1(H) of individual reflections are extracted directly from the powder XRD pattern and are then used in the types of structure solution calculation (e.g. direct methods, Patterson methods or the recently developed charge-flipping methodology [32-34]) that are used for single-crystal XRD data. As discussed above, however, peak overlap in the powder XRD pattern can limit the reliability of the extracted intensities, and uncertainties in the intensities can lead to difficulties in subsequent attempts to solve the structure. As noted above, such problems may be particularly severe in cases of large unit cells and low symmetry, as encountered for most molecular solids. In spite of these intrinsic difficulties, however, there have been several reported successes in the application of traditional techniques for structure solution of molecular solids from powder XRD data. [Pg.142]

As described in Chapter 11, bond valences can play a role in modelling but, since most crystal structures can still not be predicted ab initio, diffraction methods remain the most common and reliable technique for determining the structures of those compounds that can be prepared as single crystals large enough for study by X-ray or neutron diffraction. [Pg.181]

Allied with the diffraction methods, such as low-energy electron diffraction (LEED) and photoelectron diffraction (PED), which can also be applied in single-crystal research, these advances have led to much better interpretations of the vibrational spectra of chemisorbed hydrocarbons in terms of the structures of the surface species. The new results have in turn led to the possibility of reassessing more reliably earlier interpretations of the infrared or Raman spectra of adsorbed hydrocarbons on the finely divided metal samples (usually oxide supported) that are more closely related to working solid catalysts. Such spectra are more complicated because of the occurrence of a variety of different adsorption sites on the metal particles, with the consequence that the observed pattern of absorption bands frequently arises from overlapping spectra from several different surface species. [Pg.182]

By far the most reliable method to determine the absolute configuration of chiral inorganic and organic compounds is by single-crystal X-ray crystallographic analysis.4 By 1974 Saito listed 59 chiral metal complexes whose absolute stmctures were determined by X-ray diffraction.181 Advances in the speed of computer processing and other aspects of X-ray instrumentation have resulted in the ability to determine absolute structures from much smaller crystals. As a consequence, the number of crystal structure determinations of inorganic compounds has increased enormously in recent years. [Pg.190]


See other pages where Single crystals structure reliability is mentioned: [Pg.109]    [Pg.236]    [Pg.147]    [Pg.299]    [Pg.299]    [Pg.433]    [Pg.447]    [Pg.453]    [Pg.570]    [Pg.299]    [Pg.115]    [Pg.312]    [Pg.160]    [Pg.91]    [Pg.392]    [Pg.87]    [Pg.114]    [Pg.170]    [Pg.21]    [Pg.107]    [Pg.190]    [Pg.265]    [Pg.116]    [Pg.135]    [Pg.139]    [Pg.146]    [Pg.152]    [Pg.110]    [Pg.379]    [Pg.187]    [Pg.419]    [Pg.31]    [Pg.32]    [Pg.481]    [Pg.149]    [Pg.509]    [Pg.117]    [Pg.165]    [Pg.393]   


SEARCH



Crystallization reliability

Single structure

Single-crystal structures

Structural reliability

© 2024 chempedia.info