Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Silicon phenols

Epoxy polymers (including epoxy novolacs) have been designed to meet most of these requirements and are almost universally used in such encap-sulant applications. Epoxy polymers exhibit superior adhesion that in many cases eliminates the need for a barrier or junction coating. They have a low coefScient of thermal expansion low shrinkage and low injection velocity, which means that low transfer or injection pressures can be used. These polymers also possess excellent mechanical properties coupled with low moisture and gas permeability. Above all, they are cheap and readily available. Other transfer-molding materials used to a limited extent include silicones, phenolic materials, and even polyesters. Most molding formulations are highly filled (70-75%) with materials such as quartz, fused silica, short... [Pg.18]

This copolymer can be obtained from a polydimethylsiloxane that has aminoalkyl end groups in a reaction with the polyetherimide formed from the reaction of a bis(ether anhydride) with diaminobenzene. The material is fire resistant and is used in cable insulations. Among other more complex copolymers with practical applications are poly[2,2-propanebis(4-phenyl)-carbonate]-b/ock-poly(dimethylsiloxane)] and a silicone phenol formaldehyde copolymer obtained in two steps, the first being the heating of a polydimethylsiloxane that has reactive end groups with glycerol, and the second step being the reaction with a phenol formaldehyde resin. [Pg.661]

Most high performance applications in aircraft use epoxy-based resin systems. Silicones, phenolics and polyimides are limited to special high temperature or electrical applications. Although thermosetting resins such as epoxy are commonly used in filament winding, there has been recent research into using thermoplastic matrix materials [9]. [Pg.60]

Almost any continuous reinforcement can be used. The most commonly used is glass, both E and S, but carbon and aramid fibers are also used, and quartz, boron, ceramics and metal wire and strip have all been successfiilly applied. Latest developments include adaptation of the process for as3mimetrical products. Suitable resins include TS polyesters, epoxies, bismaleimides, polyimides, silicones, phenolics and thermoplastics. [Pg.386]

Silicones Phenol formaldehyde polyamides 6 6,6 6,9 6,10 10 12 Styrene-maleic anhydride... [Pg.206]

Alkyd chemistry lends itself to further modification beyond choice of polyol, dibasic acid, and drying oil. Vinyl-modified alkyds, for example, are produced for more durable and quicker drying films, although with some sacrifice in crosslinking rate and consequent development of solvent resistance. Styrene, vinyl toluene, and methyl methacrylate are the most commonly used modifiers. In the presence of a free radical initiator, vinyl polymer will graft onto the alkyd. Tack-free time (i.e. a surface-dry film) may be reduced from 4 to 6 hoius for an unmodified alkyd to 1 hour in styrenated form. Acrylics, silicones, phenolic resins, and natural resins are likewise used to tailor film gloss, flexibility, durability, and drying time for certain applications. [Pg.113]

Today about 75% of the market is held by General Electric and Bayer with their products Lexan and Makrolon respectively. Other manufacturers are ANIC (Italy), Taijin Chemical Co., Mitsubishi Edogawa and Idemitsu Kasei in Japan and, since 1985, Dow (USA) and Policarbonatos do Brasil (Brazil). Whilst this market is dominated by bis-phenol A polycarbonates, recent important developments include alloys with other thermoplastics, polyester carbonates and silicone-polycarbonate block copolymers. [Pg.557]

There are now commercially available a large range of laminated plastics materials. Resins used include the phenolics, the aminoplastics, polyesters, epoxies, silicones and the furane resins, whilst reinforcements may be of paper, cotton fibre, other organic fibres, asbestos, carbon fibre or glass fibre. Of these the phenolics were the first to achieve commercial significance and they are still of considerable importance. [Pg.654]

Because of their favourable price, polyesters are preferred to epoxide and furane resins for general purpose laminates and account for at least 95% of the low-pressure laminates produced. The epoxide resins find specialised uses for chemical, electrical and heat-resistant applications and for optimum mechanical properties. The furane resins have a limited use in chemical plant. The use of high-pressure laminates from phenolic, aminoplastic and silicone resins is discussed elsewhere in this book. [Pg.707]

Although phenolic and amino moulding powders remain by far the most important of the thermosetting moulding compositions a number of new materials have been introduced" over the last 30 years based on polyester, epoxide and silicone resins. [Pg.709]

These results demonstrate some interesting chemical principles of the use of acrylic adhesives. They stick to a broad range of substrates, with some notable exceptions. One of these is galvanized steel, a chemically active substrate which can interact with the adhesive and inhibit cure. Another is Noryl , a blend of polystyrene and polyphenylene oxide. It contains phenol groups that are known polymerization inhibitors. Highly non-polar substrates such as polyolefins and silicones are difficult to bond with any technology, but as we shall see, the initiator can play a big role in acrylic adhesion to polyolefins. [Pg.824]

Chemical compounds manufactured at petrochemical plants include methanol, formaldehyde, and halogenated hydrocarbons. Formaldehyde is used in the manufacture of plastic resins, including phenolic, urea, and melamine resins. Halogenated hydrocarbons are used in the manufacture of silicone, solvents, refrigerants, and degreasing agents. [Pg.54]

Stoved phenolics have outstanding acid resistance (up to 200 C in dry conditions and up to 100°C in wet conditions), except to strong oxidizing acids. They are unsuitable for use with alkaline solutions above pH 10, wet chlorine or hypochlorite solutions. Phenolics/silicon formulations can be used for steam up to 180°C without a significant effect on heat transfer rates. [Pg.124]

Resins not softened by heating are the phenolics furan resins, aminoplastics, alkyds, allyis, epoxy resins, polyurethanes, some polyesters, and silicones. [Pg.278]

Silicone alkyds Urethane alkyds Epoxy esters Tung oil phenolic... [Pg.127]

Semiconducting devices, switches and miniaturised v.h.f. circuits are all particularly sensitive to the slightest reaction on critical surfaces, and in devices calling for the highest levels of reliability even the most inert of the phenolic, epoxide and silicone resins are not considered to be fully acceptablecorrosion of electronic assemblies may often be enhanced by migration of ions to sensitive areas under applied potentials, and by local heating effects associated with current flows. [Pg.954]

Silicone rubber filled with microspheres and reinforced with a plastic honeycomb Polybutadiene-acrylonitrile elastomer modified phenolic resin with a subliming powder... [Pg.119]

Between 250 and 450°F (121 and 232°C), plastics used include glass or mineral-filled phenolics, melamines, alkyds, silicones, nylons, polyphenylene oxides, polysulfones, polycarbonates, methylpentenes, fluorocarbons, polypropylenes, and diallyl phthalates. The addition of glass fillers to the thermoplastics can raise the useful temperature range as much as 100°F and at the same time shortens the molding cycle. [Pg.431]

Thermoset Plastics Alkyd, amino resin, thermosetting acrylic resin, casein, epoxy, phenolic, polyester, polyamide, silicone. [Pg.602]

Difunctional reagents, for example the very cheap dimethyldichlorosilane 48, which is produced on a large technical scale, and the much more reactive and expensive dimethylsilyl bis(O-triflate) 49 [65-67] (Scheme 2.8) convert alcohols or phenols 11 in the presence of bases, for example triethylamine or DBU, into the silylated compounds 50. Thus 48 and 49 and other bifunctional reagents such as di-tert-butyldichlorosilane [68] or di(tert-butylsilyl)-bis(0-triflate) [69] and the subsequently described 51 and 52 combine two alcohols to silicon-tethered molecules 50, which can undergo interesting intramolecular reactions [70-74]. [Pg.17]

The polyoxyalkylene units in the copolymer have a molecular weight below 500, and the polysiloxane units have 3 to 50 silicon atoms. The resin has a phenol/aldehyde ratio of 2 1 to 1 5 and an average molecular weight of 500 to 20,000 Dalton. The composition shows synergistic demulsification activity when compared with the individual components. The siloxane units can be either in blocks [979,980] of the polyoxyalkylene-polysiloxane copolymer or randomly distributed [728,729]. [Pg.335]

Many other heterogeneous electrodes have been developed based on, e.g., calcium oxalate or stearate in paraffin, barium sulphate in paraffin or silicone-rubber, bismuth phosphate or iron(III) phosphate in silicone-rubber, caesium dodecamolybdophosphate in silicone-rubber and amminenickel nitrate in phenol-formaldehyde resin39 these permit the determination, respectively, of Ca and oxalate, Ba and sulphate, Bi or Fe(HI) and phosphate, Cs, Ni and nitrate, etc. [Pg.81]


See other pages where Silicon phenols is mentioned: [Pg.113]    [Pg.82]    [Pg.129]    [Pg.4]    [Pg.296]    [Pg.113]    [Pg.82]    [Pg.129]    [Pg.4]    [Pg.296]    [Pg.322]    [Pg.144]    [Pg.949]    [Pg.1216]    [Pg.181]    [Pg.281]    [Pg.114]    [Pg.431]    [Pg.341]    [Pg.431]    [Pg.432]    [Pg.26]    [Pg.10]    [Pg.762]    [Pg.99]    [Pg.14]    [Pg.15]    [Pg.41]    [Pg.942]    [Pg.719]   


SEARCH



Phenolics Silicon and

Phenolics Silicon modification

Rubber phenolics silicone adhesives

Silicon modified phenolics

Silicon phenols determination

© 2024 chempedia.info