Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selenium developments

Livestfick grown on soils high in selenium are poisoned by eating Anrogolus ( ioco-weed ). which concentrates it stie grown on land deficient in selenium develop "white muscle disease." Deficiency of seleiuiun involved in Key-shan disease in China. ... [Pg.485]

We also developed a number of other useful new fluorinating reagents. They ineluded a convenient in situ form of sulfur tetrafluoride in pyridinium polyhydrogen fluoride, selenium tetrafluoride, and ey-anurie fluoride. We introdueed uranium hexafluoride (UFg), depleted from the U-235 isotope, which is an abundant by-product of enrichment plants, as an effective fluorinating agent. [Pg.104]

Despite the inconveniences, a certain number of studies have been carried out, particularly concerning dyes containing azomethine groups. Such as hydrazones, pyrazolones, formazans, and selenazoles quinoids. Saturated heterocycles, that is, selenazolines and selenazolidines. have also been tackled. Selenium derivatives for pharmacological or physiological applications are little developed by comparison with their thiazole homologs. [Pg.275]

Phytoremediation is also being developed for dealing with soils contaminated with high levels of selenium in California again B.juncea seems to be particularly effective in accumulating the contaminant from soil, and all plants tested were more effective at removing selenate than selenite (92). This is an interesting contrast to bacterial systems, where selenite reduction is more commonly found than selenate reduction. [Pg.37]

Attempts have been made to develop methods for the production of aromatic isocyanates without the use of phosgene. None of these processes is currently in commercial use. Processes based on the reaction of carbon monoxide with aromatic nitro compounds have been examined extensively (23,27,76). The reductive carbonylation of 2,4-dinitrotoluene [121 -14-2] to toluene 2,4-diaLkylcarbamates is reported to occur in high yield at reaction temperatures of 140—180°C under 6900 kPa (1000 psi) of carbon monoxide. The resultant carbamate product distribution is noted to be a strong function of the alcohol used. Mitsui-Toatsu and Arco have disclosed a two-step reductive carbonylation process based on a cost effective selenium catalyst (22,23). [Pg.454]

Selenium occurs in the slimes as intermetallic compounds such as copper silver selenide [12040-91 -4], CuAgSe disilver selenide [1302-09-6], Ag2Se and Cu2 Se [20405-64-5], where x < 1. The primary purpose of slimes treatment is the recovery of the precious metals gold, silver, platinum, palladium, and rhodium. The recovery of selenium is a secondary concern. Because of the complexity and variabiUty of slimes composition throughout the world, a number of processes have been developed to recover both the precious metals and selenium. More recently, the emphasis has switched to the development of processes which result in early recovery of the higher value precious metals. Selenium and tellurium are released in the later stages. Processes in use at the primary copper refineries are described in detail elsewhere (25—44). [Pg.327]

A number of substances, such as the most commonly used sulfur dioxide, can reduce selenous acid solution to an elemental selenium precipitate. This precipitation separates the selenium from most elements and serves as a basis for gravimetry. In a solution containing both selenous and teUurous acids, the selenium may be quantitatively separated from the latter by performing the reduction in a solution which is 8 to 9.5 W with respect to hydrochloric acid. When selenic acid may also be present, the addition of hydroxylamine hydrochloride is recommended along with the sulfur dioxide. A simple method for the separation and deterrnination of selenium(IV) and molybdenum(VI) in mixtures, based on selective precipitation with potassium thiocarbonate, has been developed (69). [Pg.335]

Selenium is added up to 0.1% to silicon steels (2—4% Si) used in transformer cores to enhance the development of the secondary recrystallization texture which, in turn, improves the magnetic characteristics. Selenium alloying additions to the melt may be made as elemental Se, nickel—selenium, or ferroselenium. The recovery depends on the melting practice and method of addition. Normally, it is in the range of 66%, but may be as high as 90%. [Pg.336]

J. E. Oldfield, Selenium In Maps, Bulletin, Selenium—Tellurium Development Association, Grimbergen, Belgium, Apr. 1995, pp. 1—7. [Pg.338]

S. M. Jasinski, Proceedings of the Fifth International Symposium on Industrial Uses of Selenium and Tellurium, Brussels, Belgium, May 1994, S elenium—T ehurium Development Association, Grimbergen, Belgium, pp. 13—20. [Pg.338]

Sulfur [7704-34-9] S, a nonmetallic element, is the second element of Group 16 (VIA) of the Periodic Table, coming below oxygen and above selenium. In massive elemental form, sulfur is often referred to as brimstone. Sulfur is one of the most important taw materials of the chemical industry. It is of prime importance to the fertilizer industry (see Fertilizers) and its consumption is generally regarded as one of the best measures of a nation s industrial development and economic activity (see Sulfur compounds Sulfurremoval and recovery Sulfuric acid and sulfur trioxide). [Pg.115]

Most commercial tellurium is recovered from electrolytic copper refinery slimes (8—16). The tellurium content of slimes can range from a trace up to 10% (see Seleniumand selenium compounds). Most of the original processes developed for the recovery of metals of value from slimes resulted in tellurium being the last and least important metal produced. In recent years, many refineries have changed their slimes treatment processes for faster recovery of precious metals (17,18). The new processes have in common the need to remove the copper in slimes by autoclave leaching to low levels (<1%). In addition, this autoclave pretreatment dissolves a large amount of the tellurium, and the separation of the tellurium and copper from the solution which then follows places tellurium recovery at the beginning of the slimes treatment process. [Pg.385]

A novel interface to connect a ce system with an inductively coupled plasma mass spectrometric (icpms) detector has been developed (88). The interface was built using a direct injection nebulizer (din) system. The ce/din/icpms system was evaluated using samples containing selected alkah, alkaline earths, and heavy-metal ions, as well as selenium (Se(IV) and Se(VI)), and various inorganic and organic arsenic species. The preliminary results show that the system can be used to determine metal species at ppt to ppb level. [Pg.247]

Zinc—bromine storage batteries (qv) are under development as load-leveling devices in electric utilities (64). Photovoltaic batteries have been made of selenium or boron doped with bromine. Graphite fibers and certain polymers can be made electrically conductive by being doped with bromine. Bromine is used in quartz—haUde light bulbs. Bromine is used to etch aluminum, copper, and semi-conductors. Bromine and its salts are known to recover gold and other precious metals from their ores. Bromine can be used to desulfurize fine coal (see Coal conversion processes). Table 5 shows estimates of the primary uses of bromine. [Pg.289]

These are known as chemically pure (CP) cadmiums. With the development of other uses for cadmium and selenium, costs have risen substantially in recent years. Some cost reduction may be obtained by use of the cadmium Hthopones. These have the same relative shades but have been coprecipitated onto about 60% barium sulfate. The resulting extensions give better money value, if the higher pigment loading can be tolerated, with no loss in properties. [Pg.459]

The researchers of ECOHYNTOX jointly with the colleagues of the Research Industrial Enterprise Burevestnik (St. Petersburg) have developed, valided, and introduced into practice the methods of inversuve voltampermetric estimation of iodine and selenium in drinking water using AVA-2 apparatus. [Pg.210]

The content of selenium in biological and environmental objects is low and comprises 10 -10 %. This causes necessity of development of new and improvement of existing effective methods of preconcentration and determination of Se traces. [Pg.293]


See other pages where Selenium developments is mentioned: [Pg.386]    [Pg.485]    [Pg.271]    [Pg.946]    [Pg.386]    [Pg.485]    [Pg.271]    [Pg.946]    [Pg.877]    [Pg.151]    [Pg.193]    [Pg.459]    [Pg.424]    [Pg.327]    [Pg.328]    [Pg.330]    [Pg.333]    [Pg.335]    [Pg.336]    [Pg.336]    [Pg.337]    [Pg.338]    [Pg.340]    [Pg.394]    [Pg.400]    [Pg.395]    [Pg.202]    [Pg.228]    [Pg.128]    [Pg.131]   
See also in sourсe #XX -- [ Pg.426 , Pg.427 ]




SEARCH



Selenium-Tellurium Development Association

© 2024 chempedia.info