Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Selective poisoning selectivity

Anotlier important modification metliod is tire passivation of tire external crystallite surface, which may improve perfonnance in shape selective catalysis (see C2.12.7). Treatment of zeolites witli alkoxysilanes, SiCl or silane, and subsequent hydrolysis or poisoning witli bulky bases, organophosphoms compounds and arylsilanes have been used for tliis purjDose [39]. In some cases, tire improved perfonnance was, however, not related to tire masking of unselective active sites on tire outer surface but ratlier to a narrowing of tire pore diameters due to silica deposits. [Pg.2786]

Unlike ion-selective electrodes using glass membranes, crystalline solid-state ion-selective electrodes do not need to be conditioned before use and may be stored dry. The surface of the electrode is subject to poisoning, as described earlier for a Ck ISE in contact with an excessive concentration of Br. When this happens, the electrode can be returned to its original condition by sanding and polishing the crystalline membrane. [Pg.482]

Conditions of hydrogenation also determine the composition of the product. The rate of reaction is increased by increases in temperature, pressure, agitation, and catalyst concentration. Selectivity is increased by increasing temperature and negatively affected by increases in pressure, agitation, and catalyst. Double-bond isomerization is enhanced by a temperature increase but decreased with increasing pressure, agitation, and catalyst. Trans isomers may also be favored by use of reused (deactivated) catalyst or sulfur-poisoned catalyst. [Pg.126]

Catalytic Properties. In zeoHtes, catalysis takes place preferentially within the intracrystaUine voids. Catalytic reactions are affected by aperture size and type of channel system, through which reactants and products must diffuse. Modification techniques include ion exchange, variation of Si/A1 ratio, hydrothermal dealumination or stabilization, which produces Lewis acidity, introduction of acidic groups such as bridging Si(OH)Al, which impart Briimsted acidity, and introducing dispersed metal phases such as noble metals. In addition, the zeoHte framework stmcture determines shape-selective effects. Several types have been demonstrated including reactant selectivity, product selectivity, and restricted transition-state selectivity (28). Nonshape-selective surface activity is observed on very small crystals, and it may be desirable to poison these sites selectively, eg, with bulky heterocycHc compounds unable to penetrate the channel apertures, or by surface sdation. [Pg.449]

A selective poison is one that binds to the catalyst surface in such a way that it blocks the catalytic sites for one kind of reaction but not those for another. Selective poisons are used to control the selectivity of a catalyst. For example, nickel catalysts supported on alumina are used for selective removal of acetjiene impurities in olefin streams (58). The catalyst is treated with a continuous feed stream containing sulfur to poison it to an exacdy controlled degree that does not affect the activity for conversion of acetylene to ethylene but does poison the activity for ethylene hydrogenation to ethane. Thus the acetylene is removed and the valuable olefin is not converted. [Pg.174]

Each precious metal or base metal oxide has unique characteristics, and the correct metal or combination of metals must be selected for each exhaust control appHcation. The metal loading of the supported metal oxide catalysts is typically much greater than for nobel metals, because of the lower inherent activity pet exposed atom of catalyst. This higher overall metal loading, however, can make the system more tolerant of catalyst poisons. Some compounds can quickly poison the limited sites available on the noble metal catalysts (19). [Pg.503]

Poisoning is operationally defined. Often catalysts beheved to be permanently poisoned can be regenerated (5) (see Catalysts, regeneration). A species may be a poison ia some reactions, but not ia others, depending on its adsorption strength relative to that of other species competing for catalytic sites (24), and the temperature of the system. Catalysis poisons have been classified according to chemical species, types of reactions poisoned, and selectivity for active catalyst sites (24). [Pg.508]

Contrary to the expectation that a sulfur-containing substituent will be a catalyst poison, a phenylthio group serves as an effective selectivity control element in TMM cycloadditions. A single regioisomer (30) was obtained from the carbonate precursor (31) in good yield. The thermodynamically more stable sulfide (32) is readily accessible from (30) via a 1,3-sulfide shift catalyzed by PhSSPh. A wide array of synthetically useful intermediates could be prepared from the sulfides (30) and (32) with simple transformations (Scheme 2.10) [20]. [Pg.64]

In order to reduce or eliminate off-line sample preparation, multidimensional chromatographic techniques have been employed in these difficult analyses. LC-GC has been employed in numerous applications that involve the analysis of poisonous compounds or metabolites from biological matrices such as fats and tissues, while GC-GC has been employed for complex samples, such as arson propellants and for samples in which special selectivity, such as chiral recognition, is required. Other techniques include on-line sample preparation methods, such as supercritical fluid extraction (SFE)-GC and LC-GC-GC. In many of these applications, the chromatographic method is coupled to mass spectrometry or another spectrometiic detector for final confirmation of the analyte identity, as required by many courts of law. [Pg.407]

There is a complication in choosing a catalyst for selective reductions of bifunctional molecules, For a function to be reduced, it must undergo an activated adsorption on a catalytic site, and to be reduced selectively it must occupy preferentially most of the active catalyst sites. The rate at which a function is reduced is a product of the rate constant and the fraction of active sites occupied by the adsorbed function. Regardless of how easily a function can be reduced, no reduction of that function will occur if all of the sites are occupied by something else (a poison, solvent, or other function). [Pg.3]

A variety of inorganic (31,87) and organic bases have been added to the catalyst to improve selectivity. The effectiveness of organic bases is very sensitive to structure. Morpholine is an effective inhibitor, more so than /Si-melhylmorphollne > N-elhylmorpholine > 3,5-dimethylmorpholine (55). Piperazine is effective, but ethanolamine and ethylenediamine are poisons. [Pg.108]

The metals in the FCC feed have many deleterious effects. Nickel causes excess hydrogen production, forcing eventual loss in the conversion or thruput. Both vanadium and sodium destroy catalyst structure, causing losses in activity and selectivity. Solving the undesirable effects of metal poisoning involves several approaches ... [Pg.68]

In addition to having the required spedfidty, lipases employed as catalysts for modification of triglycerides must be stable and active under the reaction conditions used. Lipases are usually attached to supports (ie they are immobilised). Catalyst activity and stability depend, therefore, not only on the lipase, but also the support used for its immobilisation. Interesterification reactions are generally run at temperatures up to 70°C with low water availability. Fortunately many immobilised lipases are active and resistant to heat inactivation under conditions of low water availability, but they can be susceptible to inactivation by minor components in oils and fats. If possible, lipases resistant to this type of poisoning should be selected for commercial operations. [Pg.331]

This paper surveys the field of methanation from fundamentals through commercial application. Thermodynamic data are used to predict the effects of temperature, pressure, number of equilibrium reaction stages, and feed composition on methane yield. Mechanisms and proposed kinetic equations are reviewed. These equations cannot prove any one mechanism however, they give insight on relative catalyst activity and rate-controlling steps. Derivation of kinetic equations from the temperature profile in an adiabatic flow system is illustrated. Various catalysts and their preparation are discussed. Nickel seems best nickel catalysts apparently have active sites with AF 3 kcal which accounts for observed poisoning by sulfur and steam. Carbon laydown is thermodynamically possible in a methanator, but it can be avoided kinetically by proper catalyst selection. Proposed commercial methanation systems are reviewed. [Pg.10]

Nickel. As a methanation catalyst, nickel is presently preeminent. It is relatively cheap, it is very active, and it is the most selective to methane of all the metals. Its main drawback is that it is easily poisoned by sulfur, a fault common to all the known active methanation catalysts. The nickel content of commercial nickel catalysts is 25-77 wt %. Nickel is dispersed on a high-surface-area, refractory support such as alumina or kieselguhr. Some supports inhibit the formation of carbon by Reaction 4. Chromia-supported nickel has been studied by Czechoslovakian and Russian investigators. [Pg.23]

It is highly active but easily poisoned by sulfur and not particularly selective to methane. Oddly enough, carbon monoxide appears to inhibit the rate of methane formation. [Pg.25]

Partially extracted Raney cobalt is very active, but it is easily poisoned by sulfur and tends to lay down carbon more readily than Raney nickel (21). Cobalt is less active than nickel and much less selective to methane... [Pg.25]

Iron is reasonably active, but less selective than nickel. It also tends to lay down carbon and to be poisoned by sulfur (30, 31). [Pg.25]


See other pages where Selective poisoning selectivity is mentioned: [Pg.100]    [Pg.391]    [Pg.307]    [Pg.103]    [Pg.307]    [Pg.457]    [Pg.440]    [Pg.43]    [Pg.481]    [Pg.482]    [Pg.317]    [Pg.422]    [Pg.197]    [Pg.222]    [Pg.282]    [Pg.508]    [Pg.35]    [Pg.299]    [Pg.52]    [Pg.811]    [Pg.296]    [Pg.5]    [Pg.13]    [Pg.219]    [Pg.559]    [Pg.554]    [Pg.649]    [Pg.230]    [Pg.89]    [Pg.90]    [Pg.230]    [Pg.264]    [Pg.324]   
See also in sourсe #XX -- [ Pg.333 , Pg.343 ]




SEARCH



Poisons selection

Poisons, selective

Selective poisoning

© 2024 chempedia.info