Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Stability, dependent

Thin films of fullerenes, which were deposited on an electrode surface via, for example, drop coating, were largely heterogeneous, due to the entrapping of solvent molecules into their domains. Consequently, their electrochemical behaviour displayed different degrees of reversibility and stability depending on the time of electrolysis and the... [Pg.2418]

The three isomers of thiazoleacetic acid can be decarboxylated, the order of facility being 2>5>4, though the relative stability depends on each particular compound and the reaction conditions (72-75). This reaction may be used to obtain certain alkylthiazoles (73). Malonic derivatives can also be decarboxylated to give aliphatic thiazole acids (49, 51)... [Pg.341]

In the simple Bunsen flame on a tube of circular cross-section, the stabilization depends on the velocity variation in the flow emerging from the tube. For laminar flow (paraboHc velocity profile) in a tube, the velocity at a radius r is given by equation 20 ... [Pg.523]

The Bts derivative is formed from the sulfonyl chloride, either using apro-tic conditions for simple amines or by the Schotten-Baumann protocol for amino acids (87-97% yield). The primary drawback of this reagent is that its stability depends on its quality. It can on occasion rapidly and exothermically lose SO2 to give 2-chlorobenzothiazole. ... [Pg.611]

In this work the possibility of the existence of 1,2-dihydro isomer with the core structure 42 was not considered. Recently, however, it was shown that 1,2-dihydropyridazines could be prepared by careful electroreduction of the corresponding pyridazines, and that their stability depends significantly on the ring substitutions. Thus, dimethyl l,2-dihydropyridazine-3,6-dicarboxylate 43a (R = H) is reasonably stable and rearranges into the 1,4-dihydro tautomer 43b only at a more negative potential, while the tautomerization in its tetrasubstituted analog 43a (R = COOMe) occurs more readily (Scheme 14) [00TL647]. [Pg.263]

Table 11 describes the thermal properties of polyether sulfone based on DCDPS and heteroarylenediol. The TgS range from 230 to 315°C and the decomposition temperature is higher than 450°C. Their thermal stability depends on the bisphenol and activated difluoride used in the polymer synthesis (Tables 10 and 11). [Pg.54]

Upon shutting in the well, the pressure builds up both on the drillpipe and casing sides. The rate of pressure buildup and time required for stabilization depend upon formation fluid type, formation properties, initial differential pressure and drilling fluid properties. In Ref. [143] technique is provided for determining the shut-in pressures if the drillpipe pressure is recorded as a function of time. Here we assume that after a relatively short time the conditions are stabilized. At this time we record the shut-in drillpipe pressure (SIDPP) and the shut-in casing pressure (SICP). A small difference between their pressures indicates liquid kick (oil, saltwater) while a large difference is evidence of gas influx. This is true for the same kick size (pit gain). [Pg.1105]

In addition to having the required spedfidty, lipases employed as catalysts for modification of triglycerides must be stable and active under the reaction conditions used. Lipases are usually attached to supports (ie they are immobilised). Catalyst activity and stability depend, therefore, not only on the lipase, but also the support used for its immobilisation. Interesterification reactions are generally run at temperatures up to 70°C with low water availability. Fortunately many immobilised lipases are active and resistant to heat inactivation under conditions of low water availability, but they can be susceptible to inactivation by minor components in oils and fats. If possible, lipases resistant to this type of poisoning should be selected for commercial operations. [Pg.331]

Safety risks and the environmental impact are of major importance for the practical success of bromine storage system. The nonaqueous polybromide complexes in general show excellent physical properties, such as good ionic conductivity (0.1-0.05 Qcirf1), oxidation stability (depending on the nature of the ammonium ion), and a low bromine vapor pressure. The concentration of active bromine in the aqueous solution is reduced by formation of the complex phase up to 0.01-0.05 mol/L, hence ensuring a decisive decrease of selfdischarge. [Pg.189]

According to the theory of cyclic conjugation, the Hueckel rule is applicable only to a continuous cyclic conjugation, but not to a discontinuous one (Schemes 14 and 15). In the discontinuously conjugated molecules, electron donors and acceptors are alternately disposed along the cyclic chain [25].The thermodynamic stability depends neither on the number of n electrons nor the orbital phase properties, but on the number of neighboring donor-acceptor pairs. Chemical consequences of the continuity-discontinuity of cyclic conjugation are reviewed briefly here. [Pg.113]

Whatever is the mechanism of interchain interactions to form a three dimensional network, the basis is the formation of a cooperative junction whose stability depends on the specific energy of the linkages and the number of units cooperatively bound, as well as the number of chains involved. [Pg.31]

I), the substituent occurs on the carbon atom bearing the unpaired electron, and in this position it is able to provide resonance structures in which the unpaired electron appears on the substituent. The substituent consequently has the effect of stabilizing the radical, the extent of such stabilization depending, of course, on the capacity of the substituent for resonance. In product radical (II), the substituent is situated on the beta carbon atom, where it is unavailable for participation in resonating structures involving the odd electron. Consequently, the product radical (I) ordinarily will be more stable than... [Pg.231]

Derivatives of aliphatic alkynes (14 and 15) are more thermally unstable than 12, but they show SmA and N phases at low temperatures (below 130 °C). The type of phase and the mesophase stability depend on the length of both the terminal and the lateral chains. When both chains are elongated, the mesomorphism becomes metastable and compounds 14 display monotropic N and SmA transitions. Complexes IS, which contains an ester group with an opposite direction to that of complexes 14, display less stable nematic mesophases. [Pg.371]

Because stability depends on the ability of the particles to remain at discrete distances from each other, the well-known relation described by Morse (5) can be used as a starting point for stabilization mechanisms. As shown in Figure 3, two uncharged (and nonrepelling) bodies approach each other until they have attained an equilibrium distance corresponding to the position of minimum energy. The solid line actually represents a compromise between the repulsive forces operative between two atoms when their electron clouds overlap and the attraction which always exists between two bodies. [Pg.97]

The diazonium salt s stability depends on the structure of the aromatic group and above all, of the anion salt. [Pg.287]

The pH of a drug solution may have a very dramatic effect on its stability. Depending on the reaction mechanism, a change of more than 10-fold in rate... [Pg.160]

We report here studies on a polymer fi1m which is formed by the thermal polymerization of a monomeric complex tris(5,5 -bis[(3-acrylvl-l-propoxy)carbonyll-2,2 -bipyridine)ruthenium(11) as its tosylate salt,I (4). Polymer films formed from I (poly-I) are insoluble in all solvents tested and possess extremely good chemical and electrochemical stability. Depending on the formal oxidation state of the ruthenium sites in poly-I the material can either act as a redox conductor or as an electronic (ohmic) conductor having a specific conductivity which is semiconductorlike in magnitude. [Pg.420]

In a given porous medium at a fixed water saturation (i.e., with P S ) set), static foam stability depends solely on the... [Pg.465]

The charge carriers may reduce or oxidize the semiconductor itself leading to decomposition. This poses a serious problem for practical photoelectrochemical devices. Absolute thermodynamic stability can be achieved if the redox potential of oxidative decomposition reaction lies below the valence band and the redox potential of the reductive decomposition reaction lies above the conduction band. In most cases, usually one or both redox potentials lie within the bandgap. Then the stability depends on the competition between thermodynamically possible reactions. When the redox potentials of electrode decomposition reactions are thermodynamically more favored than electrolyte redox reactions, the result is electrode instability, for example, ZnO, Cu20, and CdS in an aqueous electrolyte. [Pg.236]


See other pages where Stability, dependent is mentioned: [Pg.7]    [Pg.535]    [Pg.305]    [Pg.2340]    [Pg.405]    [Pg.323]    [Pg.46]    [Pg.35]    [Pg.216]    [Pg.80]    [Pg.369]    [Pg.678]    [Pg.142]    [Pg.305]    [Pg.503]    [Pg.518]    [Pg.197]    [Pg.195]    [Pg.232]    [Pg.824]    [Pg.109]    [Pg.508]    [Pg.574]    [Pg.263]    [Pg.39]    [Pg.74]    [Pg.99]    [Pg.711]    [Pg.38]    [Pg.130]    [Pg.227]    [Pg.131]   
See also in sourсe #XX -- [ Pg.162 ]




SEARCH



© 2024 chempedia.info