Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Risk assessment exposure analysis

The second phase of ecological risk assessment, the analysis phase, includes two principal activities characterization of exposure and characterization of ecological effects (Figure 28.1). [Pg.507]

Risk Assessment and Analysis—severity, frequency, nature of exposures. [Pg.343]

The four steps of the risk-assessment process are hazard identification, analysis of exposure, analysis of effect, and risk characterization. In the hazard identification step, the risk assessor identifies chemicals of concern, environmental pathways of exposure, and populations and subpopulations at risk. The exposure analysis develops exposure scenarios and estimates the chronic daily intake of each chemical of concern. In the analysis of effect, the risk assessor combines the chronic daily intake calculated in the exposure analysis with toxicity data from animal studies (and/or human epidemiological studies, if available) to estimate the risk of toxic effects in exposed populations, whereby risks to public health are divided into two broad categories noncancer health effects and cancer. The final step of the risk-assessment process, risk characterization, is a narrative that marshals all the evidence of risk to public health, including quantitative risk assessments and qualitative evidence of risk. The risk assessor weighs all the evidence and uses professional judgment to draw conclusions about risks. [Pg.151]

Most human or environmental healtli hazards can be evaluated by dissecting tlie analysis into four parts liazard identification, dose-response assessment or hazard assessment, exposure assessment, and risk characterization. For some perceived healtli liazards, tlie risk assessment might stop with tlie first step, liazard identification, if no adverse effect is identified or if an agency elects to take regulatory action witliout furtlier analysis. Regarding liazard identification, a hazard is defined as a toxic agent or a set of conditions that luis the potential to cause adverse effects to hmnan health or tlie environment. Healtli hazard identification involves an evaluation of various forms of information in order to identify the different liaz.ards. Dose-response or toxicity assessment is required in an overall assessment responses/cffects can vary widely since all chemicals and contaminants vary in their capacity to cause adverse effects. This step frequently requires that assumptions be made to relate... [Pg.285]

An appropriate sampling program is critical in the conduct of a hcaltli risk assessment. This topic could arguably be part of the exposure assessment, but it has been placed within hazard identification because, if the degree of contamination is small, no further work may be necessary. Not only is it important that samples be collected in a random or representative manner, but the number of samples must be sufficient to conduct a statistically valid analysis. The number needed to insure statistical validity will be dictated by the variability between the results. The larger the variance, tlic greater the number of samples needed to define tire problem, ... [Pg.291]

Studies may be designed for estimating exposures to a wide array of wildlife, including birds, mammals and amphibians. Many regulatory requirements involve birds, and less emphasis is currently placed on other species. As regulatory requirements evolve, ecological risk assessments will be required for more species. This may require alternative approaches for food item analysis to allow estimates of pesticide ingestion. [Pg.940]

A total of 10,000 iterations or calculations of dose were performed as part of this simulation, and Figure 4 shows the resulting distribution of average daily doses of chlorpyrifos as determined by the Monte Carlo simulation. Common practice in exposure and risk assessment is to characterize the 50th percentile as a "typical" exposure and the 95th percentile as the "reasonable maximum" exposure.4 The distributional analysis for these calculated doses... [Pg.45]

If linear (dose) models without thresholds are to be used for carcinogen (or other) risk assessment, estimation of exposure at specified levels becomes irrelevant to risk assessment or, at least, its use is nonintuitive. For example, a carcinogen risk analysis may be based on a linear, nonthreshold health effects model. The total health risk would thus be proportional to the long-term exposure summed for all affected people for the identified period, and exposure of many people at low concentrations would be equivalent to exposure of a few to high concentrations. The atmospheric dispersion that reduces concentrations would also lead to exposure of more people therefore, increments... [Pg.71]

Its capability to conduct full-chain risk assessment on a common system, which allows for linking the simulation of chemical fate in the environmental media, multiple pathways of exposure and the detailed analysis for multiple effects in different target tissues in human body (by PBPK models). [Pg.65]

However, as a general observation, this study demonstrated the feasibility of the integrated modeling approach to couple an environmental multimedia and a PBPK models, considering multi-exposure pathways, and thus the potential applicability of the 2-FUN tool for health risk assessment. The global sensitivity analysis effectively discovered which input parameters and exposure pathways were the key drivers of Pb concentrations in the arterial blood of adults and children. This information allows us to focus on predominant input parameters and exposure pathways, and then to improve more efficiently the performance of the modeling tool for the risk assessment. [Pg.371]

A number of EIA theorists believe in incorporating formal RA methods into EIA as a way to cope with uncertainties, especially in impact prediction where a formal framework for ecological risk assessment (EcoRA) is already developed. It includes three generic phases problem formulation, analysis, and risk characterization followed by risk management. The analysis phase includes an exposure assessment and an ecological effects assessment (see, e.g., US EPA (1998)). [Pg.10]

In formal EcoRA framework three phases of risk analysis are identified problem formulation, analysis, and risk characterization followed by risk management. The analysis phase includes an exposure assessment and an ecological effects assessment (see Figure 2). [Pg.11]

Decision Analysis. An alternative to making assumptions that select single estimates and suppress uncertainties is to use decision analysis methods, which make the uncertainties explicit in risk assessment and risk evaluation. Judgmental probabilities can be used to characterize uncertainties in the dose response relationship, the extent of human exposure, and the economic costs associated with control policies. Decision analysis provides a conceptual framework to separate the questions of information, what will happen as a consequence of control policy choice, from value judgments on how much conservatism is appropriate in decisions involving human health. [Pg.186]

Environmental risk assessment of substances is nowadays based on an evaluation of exposure pathways and concentrations on the one hand and identification and selection of sensitive endpoints on the other. The concept is operationalised by comparing real or estimated (predicted) exposure concentrations (PEC) with calculated no-effect concentrations (NEC or PNEC, predicted NEC). The comparison can be made by calculating the quotient of exposure and no-effect concentration. If the quotient is less than one, then the substance poses no significant risk to the environment. If the quotient is greater than one, the substance may pose a risk, and further action is required, e.g. a more thorough analysis of probability and magnitude of effects will be carried out. [Pg.942]

The magnitude of the dose is a function of the amount of chemical in the medium of contact, the rate of contact with the medium, the route of exposure, and other factors as well. Experts in exposure analysis use various means to estimate the dose incurred by individuals exposed to chemicals. Exposure analysis is one of the critical steps in toxicological risk assessment. [Pg.28]

A similar set of defaults could be described for the human exposure assessment step. As noted, the regulatory approach tends to target those members of the population who are at the high end of exposures, and in some cases regulators, and other risk assessors, engage in something close to what is known as a worst-case exposure analysis. Here are three simple examples. [Pg.228]


See other pages where Risk assessment exposure analysis is mentioned: [Pg.36]    [Pg.373]    [Pg.39]    [Pg.368]    [Pg.10]    [Pg.138]    [Pg.138]    [Pg.45]    [Pg.239]    [Pg.92]    [Pg.2270]    [Pg.334]    [Pg.286]    [Pg.288]    [Pg.289]    [Pg.387]    [Pg.387]    [Pg.566]    [Pg.6]    [Pg.604]    [Pg.604]    [Pg.1007]    [Pg.180]    [Pg.415]    [Pg.412]    [Pg.263]    [Pg.266]    [Pg.41]    [Pg.185]    [Pg.963]    [Pg.271]    [Pg.166]    [Pg.61]    [Pg.217]    [Pg.223]   
See also in sourсe #XX -- [ Pg.16 ]




SEARCH



Ecological risk assessment exposure analysis

Exposure analysis

Exposure assessing

Risk analysis

Risk assessment analysis

© 2024 chempedia.info