Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gas phase analysis

Vreugdenhil A J and Butler I S 1998 Investigation of MMT adsorption on soils by diffuse reflectance infrared spectroscopy DRIFTS and headspace analysis gas-phase infrared spectroscopy HAGIS Appl. Organomet. Chem. [Pg.1795]

C. Conformational free energy analysis gas phase vs. solution conformational free energy... [Pg.765]

Apart from general laboratory gas analysis, gas-phase transmission spectroscopy is used for... [Pg.490]

The ToF mass analyzer is the fastest, has a broad m/z range, is one of most sensitive mass spectrometry analyzers available, and is well-suited to imaging applications. In ToF mass analysis, gas-phase ions produced by a pulsed ion source are accelerated in a high vacuum by an electric field. After being accelerated, the ions enter a field-free region between the ion source and detector at a vdocily related to their m/z ratio, with lower-m/z ions reaching the detector earlier than higher-m/z ions. [Pg.591]

Chromatographic techniques, particularly gas phase chromatography, are used throughout all areas of the petroleum industry research centers, quality control laboratories and refining units. The applications covered are very diverse and include gas composition, search and analysis of contaminants, monitoring production units, feed and product analysis. We will show but a few examples in this section to give the reader an idea of the potential, and limits, of chromatographic techniques. [Pg.70]

Analysis of Permanent Gases and Noncondensable Hydrocarbons by Gas Phase Chromatography... [Pg.70]

Other techniques for predicting the cetane number rely on chemical analysis (Glavinceski et al., 1984) (Pande et al., 1990). Gas phase chromatography can be used, as can NMR or even mass spectrometry (refer to 3.2.1.l.b and 3.2.2.2). [Pg.220]

To estimate the effect of automobile traffic and motor fuels on ozone formation, it is necessary to know the composition of exhaust gas in detail. Figure 5.26 gives an example of a gas phase chromatographic analysis of a conventional unleaded motor fuel. [Pg.262]

Example of an analysis of exhaust gas by gas phase chromatography and j relative reactivity of effluents with respect to tropospheric ozone formation. I... [Pg.263]

Eleetron energy-loss speetroseopy is used for obtaining speetroseopie data as a eonvenient substitute for optieal speetroseopy, and, taking advantage of diflferenees in seleetion rules, as an adjimet to optieal speetroseopy. In addition, eleetron speetroseopy has many applieations to ehemieal and stnietural analysis of samples in the gas phase, in the solid phase, and at the solid-gas interfaee. [Pg.1322]

Siegel R W 1996 Gas phase synthesis and mechanical properties of nanomaterials Analysis 24 M10... [Pg.2914]

Almost all aspects of the field of chemistry involve tire flow of energy eitlier witliin or between molecules. Indeed, tire occurrence of a chemical reaction between two species implies tire availability of some minimum amount of energy in tire reacting system. The study of energy transfer processes is tluis a topic of fundamental importance in chemistry. Energy transfer in gases is of particular interest partly because very sophisticated methods have been developed to study such events and partly because gas phase processes lend tliemselves to very complete and detailed tlieoretical analysis. [Pg.2996]

An important application of these results lies in the analysis of food flavorings using a combination of gas-phase chromatography and mass spectrometry (121, 122). Similarly, metabolic products of chlo-methiazole have been characterized (123). [Pg.348]

Extraction Eiltering limits particulate gravimetry to solid particulate analytes that are easily separated from their matrix. Particulate gravimetry can be extended to the analysis of gas-phase analytes, solutes, and poorly filterable solids if the analyte can be extracted from its matrix with a suitable solvent. After extraction, the solvent can be evaporated and the mass of the extracted analyte determined. Alternatively, the analyte can be determined indirectly by measuring the change in a sample s mass after extracting the analyte. Solid-phase extractions, such as those described in Ghapter 7, also may be used. [Pg.263]

The thermal conductivity of gas-phase deuterium is about 0.73 times that of gas-phase hydrogen. This thermal conductivity difference offers a convenient method for analysis of H2—D2 mixtures. Other physical properties of D2, T2, HD, DT, and HT are Hsted in the Hterature (60). [Pg.414]

Ozone can be analyzed by titrimetry, direct and colorimetric spectrometry, amperometry, oxidation—reduction potential (ORP), chemiluminescence, calorimetry, thermal conductivity, and isothermal pressure change on decomposition. The last three methods ate not frequently employed. Proper measurement of ozone in water requites an awareness of its reactivity, instabiUty, volatility, and the potential effect of interfering substances. To eliminate interferences, ozone sometimes is sparged out of solution by using an inert gas for analysis in the gas phase or on reabsorption in a clean solution. Historically, the most common analytical procedure has been the iodometric method in which gaseous ozone is absorbed by aqueous KI. [Pg.503]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

U.S. EPA, Eco Eogic International Gas-Phase Chemical Reduction Process, The Thermal Desorption Enit Applications Analysis Report, EPA/540/AR-94/504, Washington, D.C., 1994. [Pg.174]

For the analysis heat and mass transfer in concrete samples at high temperatures, the numerical model has been developed. It describes concrete, as a porous multiphase system which at local level is in thermodynamic balance with body interstice, filled by liquid water and gas phase. The model allows researching the dynamic characteristics of diffusion in view of concrete matrix phase transitions, which was usually described by means of experiments. [Pg.420]

A closer analysis of die equilibrium products of the 1 1 mixture of methane and steam shows the presence of hydrocarbons as minor constituents. Experimental results for die coupling reaction show that the yield of hydrocarbons is dependent on the redox properties of the oxide catalyst, and the oxygen potential of the gas phase, as well as die temperamre and total pressure. In any substantial oxygen mole fraction in the gas, the predominant reaction is the formation of CO and the coupling reaction is a minor one. [Pg.142]

The change in the electronic redistribution on transferring the molecule from the gas phase to aqueous solution is another interesting issue. Analysis of the computed Mulli-ken charge population demonstrates a substantial change on the hydrogen and oxygen in... [Pg.427]

It is noteworthy that it is the lower cross-over temperature T 2 that is usually measured. The above simple analysis shows that this temperature is determined by the intermolecular vibration frequencies rather than by the properties of the gas-phase reaction complex or by the static barrier. It is not surprising then, that in most solid state reactions the observed value of T 2 is of order of the Debye temperature of the crystal. Although the result (2.77a) has been obtained in the approximation < ojo, the leading exponential term turns out to be exact for arbitrary cu [Benderskii et al. 1990, 1991a]. It is instructive to compare (2.77a) with (2.27) and see that friction slows tunneling down, while the q mode promotes it. [Pg.34]


See other pages where Gas phase analysis is mentioned: [Pg.565]    [Pg.565]    [Pg.71]    [Pg.148]    [Pg.81]    [Pg.891]    [Pg.1125]    [Pg.1331]    [Pg.253]    [Pg.509]    [Pg.490]    [Pg.458]    [Pg.203]    [Pg.78]    [Pg.22]    [Pg.204]    [Pg.365]    [Pg.32]    [Pg.100]    [Pg.192]    [Pg.301]    [Pg.446]    [Pg.448]    [Pg.449]    [Pg.629]   
See also in sourсe #XX -- [ Pg.521 ]




SEARCH



Analyses of the gas phases

Analysis of Hydrocarbons Contained in a Gasoline by Gas Phase Chromatography

Analysis of Permanent Gases and Noncondensable Hydrocarbons by Gas Phase Chromatography

Gas-Phase Analysis Techniques

Gases analysis

Phase analysis

Results of the Gas-Phase Polymerization Process Exergy Analysis

© 2024 chempedia.info