Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium triphenylphosphine modified

In contrast to triphenylphosphine-modified rhodium catalysis, a high aldehyde product isomer ratio via cobalt-catalyzed hydroformylation requires high CO partial pressures, eg, 9 MPa (1305 psi) and 110°C. Under such conditions alkyl isomerization is almost completely suppressed, and the 4.4 1 isomer ratio reflects the precursor mixture which contains principally the kinetically favored -butyryl to isobutyryl cobalt tetracarbonyl. At lower CO partial pressures, eg, 0.25 MPa (36.25 psi) and 110°C, the rate of isomerization of the -butyryl cobalt intermediate is competitive with butyryl reductive elimination to aldehyde. The product n/iso ratio of 1.6 1 obtained under these conditions reflects the equihbrium isomer ratio of the precursor butyryl cobalt tetracarbonyls (11). [Pg.466]

Ligand-Modified Rhodium Process. The triphenylphosphine-modified rhodium oxo process, termed the LP Oxo process, is the industry standard for the hydroformylation of ethylene and propylene as of this writing (ca 1995). It employs a triphenylphosphine [603-35-0] (TPP) (1) modified rhodium catalyst. The process operates at low (0.7—3 MPa (100—450 psi)) pressures and low (80—120°C) temperatures. Suitable sources of rhodium are the alkanoate, 2,4-pentanedionate, or nitrate. A low (60—80 kPa (8.7—11.6 psi)) CO partial pressure and high (10—12%) TPP concentration are critical to obtaining a high (eg, 10 1) normal-to-branched aldehyde ratio. The process, first commercialized in 1976 by Union Carbide Corporation in Ponce, Puerto Rico, has been ficensed worldwide by Union Carbide Corporation and Davy Process Technology. [Pg.467]

No catalyst has an infinite lifetime. The accepted view of a catalytic cycle is that it proceeds via a series of reactive species, be they transient transition state type structures or relatively more stable intermediates. Reaction of such intermediates with either excess ligand or substrate can give rise to very stable complexes that are kinetically incompetent of sustaining catalysis. The textbook example of this is triphenylphosphine modified rhodium hydroformylation, where a plot of activity versus ligand metal ratio shows the classical volcano plot whereby activity reaches a peak at a certain ratio but then falls off rapidly in the presence of excess phosphine, see Figure... [Pg.6]

A breakthrough in hydro formylation was achieved with the introduction of a tri-arylphosphine-modified, in particular triphenylphosphine-modified, rhodium catalyst. [5] This innovation provided simultaneous improvements in catalyst stability, reaction rate and process selectivity. Additionally, products could be separated from catalyst under hydro formylation conditions. One variant is described as Gas Recycle (Figure 2.1) since the products are isolated from the catalyst by vaporization with a large recycle of the reactant gases. [6] The recycle gas is chilled to condense butanals. [Pg.12]

Kuraray [17] appears to have solved this problem in a very clever way with chemistry that is not well understood. Their solution to the problem can be viewed as having two parts. As rhodium catalyst modifiers, they use both a stoichiometric amount of a bis-phosphine and excess triphenylphosphine. The second part is to use an aqueous extraction of the product. This provides at least two advantages. The first is that the products are not exposed to the type of high temperatures that are associated with vaporizers. The second, and this is speculation, is that the water also removes the phosphonium hydroxide. [Pg.22]

This Chapter will concentrate on the hydroformylation of propene by means of rhodium catalysts, modified by water-soluble ligands such as TPPTS (triphenylphosphine m-trisulfonate). [Pg.106]

Catalyst Description. The LPO catalyst is a triphenylphosphine modified carbonyl complex of rhodium. Triphenylphosphine, carbon monoxide, and hydrogen form labile bonds with rhodium. Exotic catalyst synthesis and complicated catalyst handling steps are avoided since the desired rhodium complex forms under reaction conditions. Early work showed that a variety of rhodium compounds might be charged initially to produce the catalyst. Final selection was made on the basis of high yield of the catalyst precursor from a commodity rhodium salt, low toxicity, and good stability to air, heat, light, and shock. [Pg.80]

As we have seen in Chapter 5, the mechanistic details of the hydroformylation reaction with rhodium triphenylphosphine complexes are well established. These mechanistic considerations may be modified and extrapolated to the chiral hydroformylation system. One important point to bear in mind is that bi-dentate rather than monodentate ligands are involved in the chiral hydroformylation system. [Pg.221]

The most detailed and generally accepted kinetic study on triphenylphosphine-modified rhodium catalysts was published in 1980 [109]. It was concluded from the coefficients obtained (Table 2) that the fast alkene insertion is followed by the rate-determining step involving CO or TPP [110]. The apparent activation energy for propene hydroformylation was found to be 84 kJ/mol, very similar to the value obtained for unmodified cobalt catalysts. [Pg.54]

Phosphine modified cobalt catalysts permit the hydroformylation reaction to operate at lower pressure and produce a higher proportion of the normal isomer. Pressure is typically about 35 bars (500 psig) and the nor-mal/iso ratio is between 6 and 7. In the 1970s, Union Carbide in conjunction with Johnson Matthey and Davy McKee developed and improved oxo process based on a rhodium catalyst, modified with a triphenylphosphine (TPP) lipnd. [Pg.257]

Rhone-Poulenc and Ruhrchemie (now Hoechst) developed a process in the 1980s based on a water soluble rhodium catalyst modified with triphenylphosphine sulphonate ligand that can produce normal to iso ratios as high as 20. Previous phosphine modified rhodium catalysts were oil soluble. [Pg.257]

The important discovery by Wilkinson [1] that rhodium afforded active and selective hydroformylation catalysts under mild conditions in the presence of triphenylphosphine as a hgand triggered a lot of research on hydroformylation, especially on hgand effects and mechanistic aspects. It is commonly accepted that the mechanism for the cobalt catalyzed hydroformylation as postulated by Heck and Breslow [2] can be apphed to phosphine modified rhodium carbonyl as well. Kinetic studies of the rhodium triphenylphosphine catalyst have shown that the addition of the aUcene to the hydride rhodium complex and/or the hydride migration step is probably rate-limiting [3] (Chapter 4). In most phosphine modified systems an inverse reaction rate dependency on phosphine ligand concentration or carbon monoxide pressure is observed [4]. [Pg.35]

Chemical processes dominate the production of short-chain organic acids. The primary route of synthesis employs the "Oxo process (Billig and Bryant 1991). Propionic acid is made by oxo synthesis of propionaldehyde from ethylene, CO, and H2 with a rhodium catalyst. liquid-phase oxidation of the aldehyde yields propionic add. Butyric acid is made by air oxidation of butyraldehyde, which is synthesized by the 0x0 process fi-om propylene, CO, and H2. The triphenylphosphine-modified rhodium 0x0 process, termed the LP Oxo process, is the industry standard for the hydroformylation of ethylene and propylene (Billig and Bryant 1991). Also pure propionic acid can be obtained from propionitrile or by oxidation of propane gas. [Pg.142]

Fig. 22.6. Butyraldehyde process using triphenylphosphine-modified rhodium carbonyl catalyst. (Encyclopedia of Chemical Technology, Kirk and Othmer, 3rd ed., Vol. 16, p. 648, 1980. Copyright by John Wiiey Sons, inc. and reproduced by permission of the copyright owner.)... Fig. 22.6. Butyraldehyde process using triphenylphosphine-modified rhodium carbonyl catalyst. (Encyclopedia of Chemical Technology, Kirk and Othmer, 3rd ed., Vol. 16, p. 648, 1980. Copyright by John Wiiey Sons, inc. and reproduced by permission of the copyright owner.)...
Mitsubishi has patented a triphenylphosphine oxide-modified rhodium catalyst for the hydroformylation of higher alkenes with both alkyl branches and internal bonds. [19] Reaction conditions are 50-300 kg/cm2 of CO/H2 and 100-150 degrees C. The high CO/H2 partial pressures provide stabilization for rhodium in the reactor, but rhodium stability in the vaporizer separation system is a different matter. Mitsubishi adds triphenylphosphine to stabilize rhodium in the vaporizer. After separation, triphenylphosphine is converted to its oxide before the catalyst is returned to the reactor. [Pg.23]

Scheme 39.2 Examples of typical rhodium-based catalyst systems and modified derivatives of triphenylphosphine as used to control their solubility with scC02 in homogeneous or multiphase systems (BARF=tetrakis[3,5-bis (trifluoromethyl)phenyl]borate). Scheme 39.2 Examples of typical rhodium-based catalyst systems and modified derivatives of triphenylphosphine as used to control their solubility with scC02 in homogeneous or multiphase systems (BARF=tetrakis[3,5-bis (trifluoromethyl)phenyl]borate).
As a result, the second-generation processes used rhodium as the metal. The first rhodium-catalysed, ligand-modified process came on stream in 1974 (Celanese) and more were to follow in 1976 (Union Carbide Corporation) and in 1978 (Mitsubishi Chemical Corporation), all using triphenylphosphine (tpp). The UCC (now Dow) process has been licensed to many other users and it is... [Pg.139]

An alternative scheme to simultaneous formation of acetaldehyde and acetic anhydride could entail the carbonylation of methyl acetate to acetic anhydride which is subsequently reduced to acetaldehyde and acetic acid. The reaction of acetaldehyde with excess anhydride would form EDA. In fact, Fenton has described production of EDA by the reduction of acetic anhydride using both rhodium and palladium salts as catalysts when modified with triphenylphosphine (26). Two possible mechanisms for the reduction are postulated in equation 16. [Pg.144]

Also, bulky phosphite-modified rhodium catalysts are highly reactive for the hydroformylation of unsaturated fatty acid esters [23]. The catalyst was able to yield turnover numbers (TON) of 400-500 when moderate conditions with 20 bar synthesis gas pressure and 100°C were applied. These phosphites, like tris (2-ferf-butyl-methyl) phosphite, have higher activity than phosphines like triphenylphosphine. [Pg.109]

The fact that water-soluble sulfonated phosphines may combine the properties of a ligand and a surfactant in the same molecule was first mentioned in 1978 by Wilkinson etal. [11] in their study of the hydroformylation of 1-hexene using rhodium and ruthenium catalysts modified with TPPMS (triphenylphosphine mono-... [Pg.161]


See other pages where Rhodium triphenylphosphine modified is mentioned: [Pg.219]    [Pg.311]    [Pg.219]    [Pg.311]    [Pg.24]    [Pg.9]    [Pg.220]    [Pg.3272]    [Pg.312]    [Pg.651]    [Pg.365]    [Pg.492]    [Pg.1077]    [Pg.1085]    [Pg.42]    [Pg.56]    [Pg.469]    [Pg.401]    [Pg.6]    [Pg.56]    [Pg.173]    [Pg.152]    [Pg.9]    [Pg.1187]    [Pg.434]    [Pg.197]    [Pg.142]    [Pg.38]    [Pg.72]    [Pg.224]    [Pg.352]    [Pg.388]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Rhodium triphenylphosphine

© 2024 chempedia.info