Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalt complexes carbonylation

Chiral salen chromium and cobalt complexes have been shown by Jacobsen et al. to catalyze an enantioselective cycloaddition reaction of carbonyl compounds with dienes [22]. The cycloaddition reaction of different aldehydes 1 containing aromatic, aliphatic, and conjugated substituents with Danishefsky s diene 2a catalyzed by the chiral salen-chromium(III) complexes 14a,b proceeds in up to 98% yield and with moderate to high ee (Scheme 4.14). It was found that the presence of oven-dried powdered 4 A molecular sieves led to increased yield and enantioselectivity. The lowest ee (62% ee, catalyst 14b) was obtained for hexanal and the highest (93% ee, catalyst 14a) was obtained for cyclohexyl aldehyde. The mechanism of the cycloaddition reaction was investigated in terms of a traditional cycloaddition, or formation of the cycloaddition product via a Mukaiyama aldol-reaction path. In the presence of the chiral salen-chromium(III) catalyst system NMR spectroscopy of the crude reaction mixture of the reaction of benzaldehyde with Danishefsky s diene revealed the exclusive presence of the cycloaddition-pathway product. The Mukaiyama aldol condensation product was prepared independently and subjected to the conditions of the chiral salen-chromium(III)-catalyzed reactions. No detectable cycloaddition product could be observed. These results point towards a [2-i-4]-cydoaddition mechanism. [Pg.162]

Only a few other cobalt complexes of the type covered in this review (and therefore excluding, for example, the cobalt carbonyls) have been reported to act as catalysts for homogeneous hydrogenation. The complex Co(DMG)2 will catalyze the hydrogenation of benzil (PhCOCOPh) to benzoin (PhCHOHCOPh). When this reaction is carried out in the presence of quinine, the product shows optical activity. The degree of optical purity varies with the nature of the solvent and reaches a maximum of 61.5% in benzene. It was concluded that asymmetric synthesis occurred via the formation of an organocobalt complex in which quinine was coordinated in the trans position (133). Both Co(DMG)2 and cobalamin-cobalt(II) in methanol will catalyze the following reductive methylations ... [Pg.437]

Carbonylation of alkynes is a convenient method to synthesize various carbonyl compounds. Alper et al. found that carbonylation of terminal alkynes could be carried out in aqueous media in the presence of 1 atm CO by a cobalt catalyst, affording 2-butenolide products. This reaction can also be catalyzed by a cobalt complex and a ruthenium complex to give y-keto acids (Scheme 4.8).92... [Pg.126]

A combination of Co-mediated amino-carbonylation and a Pauson-Khand reaction was described by Pericas and colleagues [286], with the formation of five new bonds in a single operation. Reaction of l-chloro-2-phenylacetylene 6/4-34 and dicobalt octacarbonyl gave the two cobalt complexes 6/4-36 and 6/4-37 via 6/4-35, which were treated with an amine 6/4-38. The final products of this domino process are azadi- and azatriquinanes 6/4-40 with 6/4-39 as an intermediate, which can also be isolated and separately transformed into 6/4-40 (Scheme 6/4.11). [Pg.464]

Under the conditions of the cobalt-mediated carbonylative A-oxide-promoted cocyclization (Pauson-Khand reaction) at room temperature, compound 547 provides exocyclic 1,3-diene 548 as the major product (>98%) together with only traces of the corresponding carbonylative product 549. Owing to the relative instability of the diene, it is more efficient to perform a one-pot cobalt cyclization/Diels-Alder process after A-oxide-promoted cyclization of the cobalt complexes. Compound 550 is obtained as a single diastereomer in 39% overall yield if MTAD is used as a dienophile (Scheme 90) <2003JOC2975>. [Pg.444]

A more complex carbonylation process is involved in the formation of bisbutenolides (bifurandiones) from cobalt carbonyl-catalyzed carbonylation of alkynes112 117 (Scheme 68). The trans derivative (53) is formed in good yield from acetylene,112 but yields from substituted acetylenes (e.g., propyne)... [Pg.350]

With [P(C6H5)3] > 0.06 M the CO evolution is first-order with respect to the cobalt complex and zero-order in phosphine, indicating that as in the case of the acyl carbonyls, the observed rate coefficient is. ... [Pg.204]

Carbonylative kinetic resolution of a racemic mixture of trans-2,3-epoxybutane was also investigated by using the enantiomerically pure cobalt complex [(J ,J )-salcy]Al(thf)2 [Co(CO)4] (4) [28]. The carbonylation of the substrate at 30 °C for 4h (49% conversion) gave the corresponding cis-/3-lactone in 44% enantiomeric excess, and the relative ratio (kre ) of the rate constants for the consumption of the two enantiomers was estimated to be 3.8, whereas at 0 °C, kte = 4.1 (Scheme 6). This successful kinetic resolution reaction supports the proposed mechanism where cationic chiral Lewis acid coordinates and activates an epoxide. [Pg.233]

Not unexpectedly, alkylation of the double carbonylated complex proceeds via a base-catalysed interfacial enolization step, but it is significant that the initial double carbonylation step also involves an interfacial reaction, as it has been shown that no pyruvic acid derivatives are obtained at low stirring rates. Further evidence comes from observations of the cobalt-catalysed carbonylation of secondary benzyl halides [8], where the overall reaction is more complex than that indicated by Scheme 8.3. In addition to the expected formation of the phenylacetic and phenylpyruvic acids, the reaction with 1-bromo-l-phenylethane also produces 3-phenylpropionic acid, 2,3-diphenylbutane, ethylbenzene and styrene (Scheme 8.4). The absence of secondary carbonylation of the phenylpropionylcobalt tetracarbonyl complex is consistent with the less favourable enolization of the phenylpropionyl group, compared with the phenylacetyl group. [Pg.370]

Aryl methyl ketones have been obtained [4, 5] by a modification of the cobalt-catalysed procedure for the synthesis of aryl carboxylic acids (8.3.1). The cobalt tetracarbonyl anion is converted initially by iodomethane into the methyltetra-carbonyl cobalt complex, which reacts with the haloarene (Scheme 8.13). Carboxylic acids are generally obtained as by-products of the reaction and, in several cases, it is the carboxylic acid which predominates. Unlike the carbonylation of haloarenes to produce exclusively the carboxylic acids [6, 7], the reaction does not need photoinitiation. Replacement of the iodomethane with benzyl bromide leads to aryl benzyl ketones in low yield, e.g. 1-bromonaphthalene produces the benzyl ketone (15%), together with the 1-naphthoic acid (5%), phenylacetic acid (15%), 1,2-diphenylethane (15%), dibenzyl ketone (1%), and 56% unchanged starting material [4,5]. a-Bromomethyl ketones dimerize in the presence of cobalt octacarbonyl and... [Pg.387]

On an alumina support, independently of the cobalt carbonyl precursor used, complex cobalt sub-carbonyls compounds, [Co(CO)4] and hydrogencarbonate species formed [143, 149]. However, the reactivity of the alumina surface depends on the degree of hydroxylation highly hydroxylated alumina is more reactive against Co2(CO)g and facilitates decarbonylation, whereas dehydroxylated alumina favors the formation of high nuclearity species like [Co6(CO),5] , which would need higher temperatures than the initial Co2(CO)8 to be decarbonylated [149]. [Pg.332]

The reaction using 11a as a substrate in the presence of several oxides as additives revealed that addition of tributylphosphine oxide, hexamethylphos-phoric triamide, and dimethyl sulfoxide all accelerate the reaction considerably. Furthermore, when about 10 molar amounts of N-methylmorpholine M-oxide (NMO) is added to the alkyne-cobalt complex 12b in THF,the reaction proceeds even at room temperature and cyclopentenone 13 b is obtained in 37% yield accompanied by another rearranged product, the methylenecyclobutanone 35, obtained in 23% yield as a mixture of ( )-and (Z)-isomers (Scheme 14). These facts indicate that dissociation of the carbonyl ligand of the alkyne-cobalt complex 12 is the rate-determining step in this rearrangement. This is also supported by the fact that under a CO atmosphere in refluxing THF the reaction is completely suppressed. [Pg.78]

The comparison of the various cobalt-complexes discloses the limitations of the usefulness of the oxidation number. In the Co(I)-R-complexes the cobalt appears to have a smaller positive net charge — if not a small negative net charge — than cobalt in the cobalt(0)-carbonyl complexes. [Pg.163]

ATR-HP IR spectroscopy has also been used to follow the cobalt-catalysed carbonylation of epoxides to give lactones or polyesters [46]. Addition of excess propylene oxide to [HCo(CO)4] (generated in situ by protonation of [Co(CO)4] ) under 20 bar CO was found to give an acyl complex, [Co(C(0)CH2CH(OH)Me)(CO)4]. Depending... [Pg.132]

The overall response to the reaction variables is very similar in the carbonylation and reductive carbonylation reactions. This may indicate similar catalysts and reaction mechanisms. In the carbonylation reaction Co(CO) " was identified by its characteristic CO stretching frequency ( v(CO) r 1890 cm" as the dominant species present in high pressure infrared experiments carried out at 170 °C and 5000 psig. Similar results were obtained in the reductive carbonylation of methanol. It is known that Co(CO) " rapidly reacts with CH I to yield CH C(0)Co(C0) (J9) however, in the carbonylation and reductive carbonylation reactions acyl-cobalt complexes are not observed by infrared under catalytic conditions. This indicates that once formed, the acyl complex rapidly reacts as outlined by Equations 7 and 8. [Pg.128]

Hydrogenation of acetic anhydride to acetaldehyde (equation 23) has been demonstrated utilizing cobalt carbonyl under one atmosphere of hydrogen. However, the cobalt complex is short lived. A more efficient cobalt catalyzed reaction with substantial catalyst longevity was realized at a temperature of 190 and 3000 psi pressure CO and hydrogen. The main products were equal amounts of EDA and acetic acid. Upon investigation, this reaction was found exceptionally efficient at a more reasonable 1500 psi pressure provided that the temperature was maintained... [Pg.149]

Figure 2 The stable precursors of cobalt(0)-carbonyl complexes. Figure 2 The stable precursors of cobalt(0)-carbonyl complexes.
The stability of soluble ruthenium carbonyl species toward decomposition to metal is a function of both carbon monoxide partial pressure and reaction temperature, similar to the situation described earlier for cobalt complexes and shown in Fig. 4. However, a quantitative study of these variables on ruthenium stability has not yet been reported. [Pg.380]


See other pages where Cobalt complexes carbonylation is mentioned: [Pg.90]    [Pg.167]    [Pg.138]    [Pg.121]    [Pg.155]    [Pg.360]    [Pg.213]    [Pg.447]    [Pg.215]    [Pg.234]    [Pg.235]    [Pg.276]    [Pg.965]    [Pg.377]    [Pg.127]    [Pg.127]    [Pg.12]    [Pg.443]    [Pg.23]    [Pg.57]    [Pg.252]    [Pg.213]    [Pg.454]    [Pg.606]    [Pg.52]    [Pg.328]   
See also in sourсe #XX -- [ Pg.131 , Pg.132 ]

See also in sourсe #XX -- [ Pg.269 ]

See also in sourсe #XX -- [ Pg.269 ]

See also in sourсe #XX -- [ Pg.6 , Pg.269 ]




SEARCH



Alkyne reactions with cobalt carbonyl complexes

Carbonyl complexes cobalt, iron, osmium, and ruthenium

Carbonyl complexes cobalt-molybdenum-ruthenium

Carbonyl complexes cobalt-osmium

Carbonyl complexes cobalt-platinum

Carbonyl complexes cobalt-ruthenium cluster

Carbonyl complexes of cobalt

Carbonyl complexes, chromium cobalt

Carbonyl complexes, chromium cobalt-molybdenum-nickel

Carbonyl complexes, chromium cobalt-molybdenum-ruthenium

Carbonyl complexes, chromium cobalt-platinum

Cobalt carbonyl carbene complexes

Cobalt carbonyl complexes

Cobalt carbonyl complexes

Cobalt carbonyl derivatives phosphine complexes

Cobalt carbonyl, amine complexes

Cobalt carbonylation

Cobalt complex compounds anions, carbonyl

Cobalt complexes carbonyl compound hydrogenation

Cobalt complexes carbonyl hydride

Cobalt complexes, double carbonylation

Cobalt complexes, electron-transfer reactions carbonyl

Cobalt hydride complexes carbonyl type

Cobalt-carbonyl acetylene complex

Compounds Derived from Alkynes and Carbonyl Complexes of Cobalt

Nucleophilic reactions cobalt carbonyl complexes

The Alkyne Cobalt Carbonyl Complexes

© 2024 chempedia.info