Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rhodium complex-catalyzed carbonylation carbon

Reaction (78) regenerates Mel from methanol and HI. Using a high-pressure IR cell at 0.6 MPa, complex (95) was found to be the main species present under catalytic conditions, and the oxidative addition of Mel was therefore assumed to be the rate determining step. The water-gas shift reaction (equation 70) also occurs during the process, causing a limited loss of carbon monoxide. A review of the cobalt-, rhodium- and iridium-catalyzed carbonylation of methanol to acetic acid is available.415... [Pg.272]

The major drawback in the development of efficient catalytic PK protocols is the use of carbon monoxide. Many groups probably refuse to use this reaction in their synthetic plans in order to avoid the manipulation of such a highly toxic gas. Carbonylation reactions without the use of carbon monoxide would make them more desirable and would lead to further advances in those areas. Once the use of rhodium complexes was introduced in catalytic PKR, two independent groups realized these species were known for effecting decarbonylation reactions in aldehydes, which is a way to synthesize metal carbonyls. Thus, aldehydes could be used as a source of CO for the PKR. This elegant approach begins with decarbonylation of an aldehyde and transfer of the CO to the enyne catalyzed by rhodium, ruthenium or iridium complexes under argon atmosphere (Scheme 36). [Pg.232]

The cobalt-catalyzed reaction of carbon monoxide and hydrogen with an alkene, hydroformylation, is an extremely important industrial process, but it occurs under vigorous conditions (200-400 bar, 150-200 °C) and is not a particularly selective reaction. In the presence of ligand-modified rhodium catalysts, however, hydroformylation can be carried out under extremely mild conditions (1 bar, 25 C). The catalytic activity of such rhodium complexes is in fact lO -Ky times greater than that of cobalt complexes and side reactions, such as hydrogenation, are significantly reduced. The reactivity of alkenes in hydroformylation follows a similar pattern to that observed in other carbonylation reactions, i.e. linear terminal alkenes react more readily than linear internal alkenes, which in turn are more reactive than branched... [Pg.1021]

In contrast to a number of studies on the homogeneous hydrogenation of carbon-carbon multiple bonds [25], there had been few papers about hydrogenation of simple ketones before Schrock and Osborn [26] reported in 1970 a catalytic activity of cationic rhodium complexes with relatively basic phosphines as ligands. In fact, the Wilkinson s rhodium(I) complex usually lacks activity towards hydrogenation of carbonyl groups, and rather catalyzes decarbonylation of aldehydes. The catalytic cycle of the hydrogenation of ketones proposed by Schrock and Osborn is depicted in Scheme 3. [Pg.193]

The important discovery by Wilkinson [1] that rhodium afforded active and selective hydroformylation catalysts under mild conditions in the presence of triphenylphosphine as a hgand triggered a lot of research on hydroformylation, especially on hgand effects and mechanistic aspects. It is commonly accepted that the mechanism for the cobalt catalyzed hydroformylation as postulated by Heck and Breslow [2] can be apphed to phosphine modified rhodium carbonyl as well. Kinetic studies of the rhodium triphenylphosphine catalyst have shown that the addition of the aUcene to the hydride rhodium complex and/or the hydride migration step is probably rate-limiting [3] (Chapter 4). In most phosphine modified systems an inverse reaction rate dependency on phosphine ligand concentration or carbon monoxide pressure is observed [4]. [Pg.35]

When the transition-metal-catalyzed hydrothiolation of unsaturated compounds is performed in the presence of carbon monoxide, carbonylation reactions may proceed with the introduction of sulfanyl groups. In fact, a series of carbonylative thiolation reactions of alkynes and allenes are reported. These reactions provide useful tools to synthetically important organosulfur compounds [104, 105]. For example, the rhodium-catalyzed reaction of alkynes with thiols and CO provides the corresponding thioformylation products regioselectively [106, 107]. Switching the catalyst from rhodium complex to platinum complex leads to a sharp reversal of regioselectivity of CO introduction [108, 109] (Scheme 32). [Pg.351]

Platinum complexes with chiral phosphorus ligands have been extensively used in asymmetric hydroformylation. In most cases, styrene has been used as the substrate to evaluate the efficiency of the catalyst systems. In addition, styrere was of interest as a model intermediate in the synthesis of arylpropionic acids, a family of anti-inflammatory drugs.308,309 Until 1993 the best enantio-selectivities in asymmetric hydroformylation were provided by platinum complexes, although the activities and regioselectivities were, in many cases, far from the obtained for rhodium catalysts. A report on asymmetric carbonylation was published in 1993.310 Two reviews dedicated to asymmetric hydroformylation, which appeared in 1995, include the most important studies and results on platinum-catalogued asymmetric hydroformylation.80,81 A report appeared in 1999 about hydrocarbonylation of carbon-carbon double bonds catalyzed by Ptn complexes, including a proposal for a mechanism for this process.311... [Pg.166]

Gyclization/hydrosilylation of enynes catalyzed by rhodium carbonyl complexes tolerated a number of functional groups, including acetate esters, benzyl ethers, acetals, tosylamides, and allyl- and benzylamines (Table 3, entries 6-14). The reaction of diallyl-2-propynylamine is noteworthy as this transformation displayed high selectivity for cyclization of the enyne moiety rather than the diene moiety (Table 3, entry 9). Rhodium-catalyzed enyne cyclization/hydrosilylation tolerated substitution at the alkyne carbon (Table 3, entry 5) and, in some cases, at both the allylic and terminal alkenyl carbon atoms (Equation (7)). [Pg.374]

Shibata and co-workers have reported an effective protocol for the cyclization/hydrosilylation of functionalized eneallenes catalyzed by mononuclear rhodium carbonyl complexes.For example, reaction of tosylamide 13 (X = NTs, R = Me) with triethoxysilane catalyzed by Rh(acac)(GO)2 in toluene at 60 °G gave protected pyrrolidine 14 in 82% yield with >20 1 diastereoselectivity and with exclusive delivery of the silane to the G=G bond of the eneallene (Equation (10)). Whereas trimethoxysilane gave results comparable to those obtained with triethoxysilane, employment of dimethylphenylsilane or a trialkylsilane led to significantly diminished yields of 14. Although effective rhodium-catalyzed cyclization/hydrosilylation was restricted to eneallenes that possessed terminal disubstitution of the allene moiety, the protocol tolerated both alkyl and aryl substitution on the terminal alkyne carbon atom and was applicable to the synthesis of cyclopentanes, pyrrolidines, and tetrahydrofurans (Equation (10)). [Pg.376]

Recently, it has been discovered that catalysis by rhodium compounds is more effective than by the older cobalt catalyst when tris(triphenylphosphine)rhodium chloride is treated with carbon monoxide, the catalyst bis(triphenylphosphine)rhodium carbonyl chloride is formed. This catalyst is very effective under very mild conditions (49-51). It is believed that the tr-ir rearrangement is also important with this catalyst and operates in a manner analogous to that in the cobalt-catalyzed process, since stablization of the cr complex has been shown to lead to olefin isomerization and lower linear selectivity (52). [Pg.245]

Reactions that combine C-H activation with a C-C bond-forming event are invaluable synthetic tools, allowing concise construction of carbon frameworks. Rhodium(i) catalysts have been shown to catalyze alkane carbonylation [21]. Recently, Sakakura and co-workers succeeded in subjecting methane to a catalytic acetaldehyde synthesis [22], They found that, in dense carbon dioxide, the complex [RhCl(PMe3)3] catalyzed the carbonylation of methane with 77 turnovers. [Pg.42]

The acid-catalyzed hydrocarboxylation of alkenes (the Koch reaction) can be performed in a number of ways. In one method, the alkene is treated with carbon monoxide and water at 100-350°C and 500-1000-atm pressure with a mineral acid catalyst. However, the reaction can also be performed under milder conditions. If the alkene is first treated with CO and catalyst and then water added, the reaction can be accomplished at 0-50°C and 1-100 atm. If formic acid is used as the source of both the CO and the water, the reaction can be carried out at room temperature and atmospheric pressure.The formic acid procedure is called the Koch-Haaf reaction (the Koch-Haaf reaction can also be applied to alcohols, see 10-77). Nearly all alkenes can be hydrocarboxylated by one or more of these procedures. However, conjugated dienes are polymerized instead. Hydrocarboxylation can also be accomplished under mild conditions (160°C and 50 atm) by the use of nickel carbonyl as catalyst. Acid catalysts are used along with the nickel carbonyl, but basic catalysts can also be employed. Other metallic salts and complexes can be used, sometimes with variations in the reaction procedure, including palladium, platinum, and rhodium catalysts. The Ni(CO)4-catalyzed oxidative carbonylation with CO and water as a nucleophile is often called Reppe carbonylationP The toxic nature of nickel... [Pg.1137]

The hydroformylation of alkenes is commonly run using soluble metal carbonyl complexes as catalysts but there are some reports of heterogeneously catalyzed reactions of olefins with hydrogen and carbon monoxide. Almost all of these are vapor phase reactions of ethylene or propylene with hydrogen and carbon monoxide catalyzed by rhodium, " 20 ruthenium,nickel, 22,123 cobalt, 23,124 and cobalt-molybdenum 23 catalysts as well as various sulfided metal catalysts. 23,125,126... [Pg.596]

Several examples of transition metal-catalyzed insertions of carbon monoxide and isocyanide into the C-H bond are known. The carbonylation of a C-H bond to an aldehyde requires photoirradiation conditions. Eisenberg et al. have found iridium-[45,46] or rhodium-catalyzed [47] photocarbonylation of benzene affording benzaldehyde, albeit with low efficiency [45-47]. They have also reported the photochemical carbonylation of benzene catalyzed by ruthenium(O) complexes [48]. [Pg.60]


See other pages where Rhodium complex-catalyzed carbonylation carbon is mentioned: [Pg.2853]    [Pg.2852]    [Pg.2072]    [Pg.1301]    [Pg.171]    [Pg.83]    [Pg.14]    [Pg.142]    [Pg.480]    [Pg.303]    [Pg.324]    [Pg.553]    [Pg.303]    [Pg.6448]    [Pg.393]    [Pg.100]    [Pg.66]    [Pg.216]    [Pg.24]    [Pg.75]    [Pg.79]    [Pg.8]    [Pg.157]    [Pg.633]    [Pg.56]    [Pg.414]    [Pg.49]    [Pg.4110]    [Pg.789]    [Pg.1071]    [Pg.45]    [Pg.281]   
See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Carbon catalyzed

Carbon complex

Carbonate complexation

Carbonate) complexes

Carbonyl carbon

Carbonyl carbonate

Carbonylation catalyzed

Carbonylation rhodium-catalyzed

Catalyzed Carbonylations

Rhodium carbon

Rhodium carbonyl complexes

Rhodium carbonylation

Rhodium carbonyls

Rhodium complex-catalyzed carbonylation

Rhodium complexes carbonates

Rhodium complexes catalyzed

Rhodium-catalyzed

© 2024 chempedia.info