Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resistance to chemicals

The actual chemical effects of chemicals have to be distinguished from such physical effects. The molecules of a chemical can enter into chemical reactions with the reactive groups of the polymer chain. For example, oxidation is possible in polyolefins, and hydrolysis in polyesters and polyamides. Chemical reactions can result in various detrimental effects from discoloration of the plastic to its complete destruction. [Pg.77]

Apart from these primary effects secondary effects can also emerge. Chemicals can extract or modify additives and thus indirectly affect the [Pg.77]

T5q)e and composition of chemicals, immersion temperature and immersion time are the key test conditions. A characterisation of the chemical re- [Pg.78]

While the EPA Method 9090 differentiates very little between the different plastic geosynthetic materials, only geosynthetics made of a few special plastic materials, especially HOPE geomembranes, will pass the BAM test. [Pg.80]

In an ideal case, no chemical or physical changes take place over a wide range of temperature (no oxidation and no swelling), also none of secondary nature (no acceleration of stabiliser depletion and stress cracking). This is the case for the material groups 10 and 11, inorganic caustic solutions and inorganic neutral salts have no detrimental effects on HDPE materials. [Pg.80]

One of the important characteristics of a pigment is its inertness to chemicals it may come in contact with. These chemicals may be paint [Pg.158]


Diamond is very resistant to chemical reagents potassium dichromate and sulphuric acid attack it with the formation of CO2. It burns in air or oxygen at 700 C to CO2 leaving scarcely any ash some forms of bort may leave as much as 4-5% ash. [Pg.132]

Silver has little tendency to formally lose more than one electron its chemistry is therefore almost entirely restricted to the + 1 oxidation state. Silver itself is resistant to chemical attack, though aqueous cyanide ion slowly attacks it, as does sulphur or a sulphide (to give black Ag S). hence the tarnishing of silver by the atmosphere or other sulphur-containing materials. It dissolves in concentrated nitric acid to give a solution of silver(I) nitrate. AgNOj. [Pg.427]

Metallic gold, which is found free in nature, has always been valued for its nobility, i.e. its resistance to chemical attack. This property is to be expected from its position in the electrochemical series. It... [Pg.430]

It is used in certain nickel-based alloys, such as the "Hastelloys(R)" which are heat-resistant and corrosion-resistant to chemical solutions. Molybdenum oxidizes at elevated temperatures. The metal has found recent application as electrodes for electrically heated glass furnaces and foreheaths. The metal is also used in nuclear energy applications and for missile and aircraft parts. Molybdenum is valuable as a catalyst in the refining of petroleum. It has found applications as a filament material in electronic and electrical applications. Molybdenum is an... [Pg.78]

The best replacement for borosilicate glassware is stainless steel. Stainless steel takes the heat, won t break, and, most importantly, is about as resistant to chemical degradation as the chemist can hope to find. For those items that won t be subjected to direct heat there can be some steel/metal or steel/plastic hybrids. In figure 3 is shown how flasks of any size can be made with two stainless steel mixing bowls welded together. Also shown is the vacuum adaptor and condenser. For the condenser only the inner pipe need be steel. The outside pipe can be copper or something. As for the other components of a distillation set up, well, they are made just as they look. [Pg.19]

The polymeric products can be made to vary widely in physical properties through controlled variation in the ratios of monomers employed in thek preparation, cross-linking, and control of molecular weight. They share common quaHties of high resistance to chemical and environmental attack, excellent clarity, and attractive strength properties (see Acrylic ester polymers). In addition to acryHc acid itself, methyl, ethyl, butyl, isobutyl, and 2-ethylhexyl acrylates are manufactured on a large scale and are available in better than 98—99% purity (4). They usually contain 10—200 ppm of hydroquinone monomethyl ether as polymerization inhibitor. [Pg.148]

Acryhcs and modacryhcs are also useflil industrial fibers. Fibers low in comonomer content, such as Dolan 10 and Du Font s PAN Type A, have exceptional resistance to chemicals and very good dimensional stabihty under hot—wet conditions. These fibers are useflil in industrial filters, battery separators, asbestos fiber replacement, hospital cubical curtains, office room dividers, uniform fabrics, and carbon fiber precursors. The exceUent resistance of acryhc fibers to sunlight also makes them highly suitable for outdoor use. Typical apphcations include modacryhcs, awnings, sandbags, tents, tarpauhns, covers for boats and swimming pools, cabanas, and duck for outdoor furniture (59). [Pg.283]

Commercial production of PVA fiber was thus started in Japan, at as early a period as that for nylon. However, compared with various other synthetic fibers which appeared after that period, the properties of which have continuously been improved, PVA fiber is not very well suited for clothing and interior uses because of its characteristic properties. The fiber, however, is widely used in the world because of unique features such as high affinity for water due to the —OH groups present in PVA, excellent mechanical properties because of high crystallinity, and high resistance to chemicals including alkah and natural conditions. [Pg.337]

Table 2. Comparison of Various Fibers Resistance to Chemicals... Table 2. Comparison of Various Fibers Resistance to Chemicals...
Chemical Resistance and Hydrolytic Stability. Modified ethylene—tetrafluoroethylene copolymers are resistant to chemicals and ... [Pg.368]

Table 5. Tefzel Resistance to Chemicals after Seven Days Exposure ... Table 5. Tefzel Resistance to Chemicals after Seven Days Exposure ...
Unsaturated resias based on 1,4-cyclohexanedimethanol are useful ia gel coats and ia laminating and molding resias where advantage is taken of the properties of very low water absorption and resistance to boiling water (6). Thermal stabiHty is imparted to molding resias, both thermoplastic (71,72) and thermoset (73—76), enabling retention of physical and electrical properties at elevated temperatures (77). Additionally, resistance to chemical and environmental exposure is characteristic of products made from these resias (78). [Pg.374]

Elastomeric materials, which provide relatively low practical static deflections and have relatively high natural frequencies, are used only to isolate higher frequencies. The volume compressibiUty of elastomeric materials is relatively low, therefore the shape of the elastomeric isolator must be taken into account, and space must be provided for lateral expansion. Because of their inherent resistance to chemical and environmental deterioration, neoprene and other synthetic materials often can be used in severe environments where natural materials would deteriorate. [Pg.319]

Chemical Properties. Molybdenum has good resistance to chemical attack by mineral acids, provided that oxidizing agents ate not present. The metal also offers excellent resistance to attack by several liquid metals. The approximate temperature limits for molybdenum to be considered for long-time service while in contact with various metals in the hquid state ate as follows ... [Pg.465]

Most Kaminsky catalysts contain only one type of active center. They produce ethylene—a-olefin copolymers with uniform compositional distributions and quite narrow MWDs which, at their limit, can be characterized by M.Jratios of about 2.0 and MFR of about 15. These features of the catalysts determine their first appHcations in the specialty resin area, to be used in the synthesis of either uniformly branched VLDPE resins or completely amorphous PE plastomers. Kaminsky catalysts have been gradually replacing Ziegler catalysts in the manufacture of certain commodity LLDPE products. They also faciUtate the copolymerization of ethylene with cycHc dienes such as cyclopentene and norhornene (33,34). These copolymers are compositionaHy uniform and can be used as LLDPE resins with special properties. Ethylene—norhornene copolymers are resistant to chemicals and heat, have high glass transitions, and very high transparency which makes them suitable for polymer optical fibers (34). [Pg.398]

The critical property for conformal coatings is resistance to chemicals, moisture, and abrasion. Other properties, such as the coefficient of thermal expansion, thermal conductivity, flexibiHty, and modulus of elasticity, are significant only in particular appHcations. The dielectric constant and loss tangent of the conformal coating are important for high speed appHcations. [Pg.532]

Properties desired in cable insulation and flexible circuit substrate materials include mechanical flexibiUty, fatigue endurance, and resistance to chemicals, water absorption, and abrasion. Both thermoplasts and thermosets are used as cable-insulating materials. Thermoplastic materials possess excellent electrical characteristics and are available at relatively low cost. [Pg.534]

Isophthahc (y -phthahc) acid [121 -91 -5] (IPA) is selected to enhance thermal endurance as well as to produce stronger, more resiUent cross-linked plastics that demonstrate improved resistance to chemical attack. TerephthaUc (p-phthaUc) acid [100-21-0] (TA) provides somewhat similar properties as isophthahc acid but is only used in selective formulations due to the limited solubiUty of these polyester polymers in styrene [100-42-5] (see Phthalic acid AND OTHERBENZENEPOLYCARBOXYLIC ACIDS). [Pg.313]

Resistance to Chemical Environments and Solubility. As a rule, amorphous plastics are susceptible, to various degrees, to cracking by certain chemical environments when the plastic material is placed under stress. The phenomenon is referred to as environmental stress cracking (ESC) and the resistance of the polymer to failure by this mode is known as environmental stress cracking resistance (ESCR). The tendency of a polymer to undergo ESC depends on several factors, the most important of which are appHed stress, temperature, and the concentration of the aggressive species. [Pg.467]

Melamine resins were introduced about ten years after the Beetle molding compound. They were very similar to those based on urea but had superior quaHties. Henkel in Germany was issued a patent for a melamine resin in 1936 (7). Melamine resins rapidly supplanted urea resins and were soon used in molding, laminating, and bonding formulations, as well as for textile and paper treatments. The remarkable stabiHty of the symmetrical triazine ring made these products resistant to chemical change once the resin had been cured to the insoluble, cross-linked state. [Pg.321]

Reverse osmosis membrane separations are governed by the properties of the membrane used in the process. These properties depend on the chemical nature of the membrane material, which is almost always a polymer, as well as its physical stmcture. Properties for the ideal RO membrane include low cost, resistance to chemical and microbial attack, mechanical and stmctural stabiHty over long operating periods and wide temperature ranges, and the desired separation characteristics for each particular system. However, few membranes satisfy all these criteria and so compromises must be made to select the best RO membrane available for each appHcation. Excellent discussions of RO membrane materials, preparation methods, and stmctures are available (8,13,16-21). [Pg.144]


See other pages where Resistance to chemicals is mentioned: [Pg.21]    [Pg.88]    [Pg.190]    [Pg.399]    [Pg.392]    [Pg.1072]    [Pg.172]    [Pg.191]    [Pg.264]    [Pg.275]    [Pg.277]    [Pg.283]    [Pg.341]    [Pg.310]    [Pg.70]    [Pg.127]    [Pg.303]    [Pg.123]    [Pg.163]    [Pg.164]    [Pg.297]    [Pg.303]    [Pg.163]    [Pg.535]    [Pg.213]    [Pg.287]    [Pg.316]    [Pg.438]   
See also in sourсe #XX -- [ Pg.10 , Pg.64 ]

See also in sourсe #XX -- [ Pg.10 , Pg.64 ]

See also in sourсe #XX -- [ Pg.89 ]




SEARCH



Binders with increased resistance to chemical attack

Chemical resistance

Chemical resistance to corrosives

Gloves, resistance to chemicals

Resistance of Selected Polymers and Rubbers to Various Chemicals at

Resistance to Chemical Environments

Resistance to chemical attack

Resistance to chemical treatment

Resistance to organic chemicals

Resistance to various chemical materials

Resolution limits due to chemical amplification in resists

© 2024 chempedia.info