Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resistance tantalum/niobium

Burns R.H., Shuker F.S. and Manning P. (1984) Industrial Applications of corrosion resistant Tantalum, Niobium and their alloys in refractory metals and their industrial applications, ASTM, Philadelphia, 50-69. [Pg.140]

Niobium like tantalum relies for its corrosion resistance on a highly adherent passive oxide film it is however not as resistant as tantalum in the more aggressive media. In no case reported in the literature is niobium inert to corrosives that attack tantalum. Niobium has not therefore been used extensively for corrosion resistant applications and little information is available on its performance in service conditions. It is more susceptible than tantalum to embrittlement by hydrogen and to corrosion by many aqueous corrodants. Although it is possible to prevent hydrogen embrittlement of niobium under some conditions by contacting it with platinum the method does not seem to be broadly effective. Niobium is attacked at room temperature by hydrofluoric acid and at 100°C by concentrated hydrochloric, sulphuric and phosphoric acids. It is embrittled by sodium hydroxide presumably as the result of hydrogen absorption and it is not suited for use with sodium sulphide. [Pg.854]

Niobium-Tantalum Niobium and tantalum form solid-solution alloys which are resistant to many corrosive media and possess all the valuable properties of the pure metals. This could have great practical value since in a number of branches of technology it might permit the replacement of pure tantalum by a cheaper alloy of niobium and tantalum. Miller" and Argent" reported data on the resistance of the niobium-tantalum system, but the tests were only carried out under mild conditions and the data have only limited significance. However, Gulyaev and Georgieva and Kieffer, Bach and Slempkowski carried out tests at elevated temperatures and their work indicated that the corrosion rates of the alloys are substantially that of tantalum provided the niobium content does not exceed 50%. [Pg.858]

The oxidation rate of niobium in air from 800°C to above 1000°C can be decreased by alloying e.g. with hafnium, zirconium, tungsten, molybdenum, titanium or tantalum . However, the preferred fabricable alloys still require further protection by coating . Ion implantation improves thermal oxidation resistance of niobium in oxygen below 500°C . [Pg.860]

It is in its behaviour to caustic alkalis that zirconium shows itself to be superior to those other elements of Groups IV and V whose resistance to corrosion results primarily from an ability to form surface films. Thus, in contrast to tantalum, niobium and titanium, zirconium is virtually completely resistant to concentrated caustic solutions at high temperatures, and it is only slightly attacked in fused alkalis. Resistance to liquid sodium is good. Zirconium is thus an excellent material of construction for sections of chemical plant demanding alternate contact with hot strong acids and hot strong alkalis—a unique and valuable attribute. [Pg.886]

Tantalum-Niobium Alloying tantalum usually decreases the corrosion resistance of the metal due to metallic contamination of the TajOj passive film. The corrosion rates in HCl and H2SO4 environments increase roughly... [Pg.900]

Among the pentavalent elements, the most important are niobium and tantalum. Niobium is an excellent material for surface treatment of steel materials for chemical industry due to its high hardness and corrosion-resistance in wet acidic conditions. Nowadays, niobium is also used for the preparation of superconductor tapes and it is used in other branches of industry, for instance in nuclear technology and metallurgy. Tantalum is also of similar importance. For these applications, it is necessary to prepare high purity metal. Molten salt electrolysis, as an alternative process to classical thermal reduction, provides niobium and tantalum with required quality. In order to optimize these processes, it is necessary to know details of both complex formation and redox chemistry of the species present in the melts. [Pg.47]

Corrosion resistance. The corrosion resistance of niobium is more limited than tantalum, and this must be taken into consideration. The limitation stems from its sensitivity to most alkalies and certain strong oxidants. However, niobium is totally resistant to such highly corrosive media as wet or dry chlorine, bromine, saturated brines, ferric chloride, hydrogen sulfide, and sulfur dioxide as well as nitric and chromic acids. It is also resistant to sulfuric and hydrochloric acids within specific temperature and concentration limits. [Pg.700]

Because of the small size of the fluoride ion, F participates in coordination stmctures of high rank. Tantalum and niobium form stable hexafluorotantalate and hexafluoroniobate ions and hydrogen fluoride attacks these usually acid-resistant metals. Hydrogen fluoride in water is a weak acid. Two dissociation constants are... [Pg.195]

The only metals having good or excellent resistance to corrosion by amalgamation with mercury are vanadium, iron, niobium, molybdenum, cesium, tantalum, and tungsten (8). The diffusion rates of some metals in mercury are given in Table 5. [Pg.106]

Tungsten with the addition of as much as 5% thoria is used for thermionic emission cathode wires and as filaments for vibration-resistant incandescent lamps. Tungsten—rhenium alloys are employed as heating elements and thermocouples. Tantalum and niobium form continuous soHd solutions with tungsten. Iron and nickel are used as ahoy agents for specialized appHcations. [Pg.191]

Niobium carbide is used as a component of hard metals, eg, mixtures of metal carbides that are cemented with cobalt, iron, and nickel. Along with tantalum carbide, niobium carbide is added to impart toughness and shock and erosion resistance. The spiraling rise in the price of tantalum has spurred the development of a hafnium carbide—niobium carbide substitute for tantalum carbide (68). These cemented carbides are used for tool bits, drill bits, shovel teeth, and other wear-resistant components turbine blades and as dies in high pressure apparatus (see Carbides). [Pg.26]

Borides are inert toward nonoxidizing acids however, a few, such as Be2B and MgB2, react with aqueous acids to form boron hydrides. Most borides dissolve in oxidizing acids such as nitric or hot sulfuric acid and they ate also readily attacked by hot alkaline salt melts or fused alkaU peroxides, forming the mote stable borates. In dry air, where a protective oxide film can be preserved, borides ate relatively resistant to oxidation. For example, the borides of vanadium, niobium, tantalum, molybdenum, and tungsten do not oxidize appreciably in air up to temperatures of 1000—1200°C. Zirconium and titanium borides ate fairly resistant up to 1400°C. Engineering and other properties of refractory metal borides have been summarized (1). [Pg.218]

Bromine reacts with essentially all metals, except tantalum and niobium, although elevated temperatures are sometimes required, eg, soHd sodium does not react with dry bromine but sodium vapor reacts vigorously. Metals such as lead, magnesium, nickel, and silver react with bromine to form a surface coat of bromide that resists further attack. This protective coating allows lead and nickel to be used as linings in bromine containers. Metals tend to be corroded by bromine faster in the presence of moisture than without, probably because of the formation of hydrobromic and hypobromous acids. [Pg.280]

Materials of Construction. Glass has excellent corrosion-resistance to wet or dry bromine. Lead is very usefiil for bromine service if water is less than 70 ppm. The bromine corrosion rate increases with concentrations of water and organics. Tantalum and niobium have excellent corrosion-resistance to wet or dry bromine. Nickel has usefiil resistance for dry bromine but is rapidly attacked by wet bromine. The fluoropolymers Kynar, Halar, and Teflon are highly resistant to bromine but are somewhat permeable. The rate depends on temperature, pressure, and stmcture (density) of fluoropolymer (63). [Pg.288]

Stainless Steel There are more than 70 standard types of stainless steel and many special alloys. These steels are produced in the wrought form (AISI types) and as cast alloys [Alloy Casting Institute (ACI) types]. Gener y, all are iron-based, with 12 to 30 percent chromium, 0 to 22 percent nickel, and minor amounts of carbon, niobium (columbium), copper, molybdenum, selenium, tantalum, and titanium. These alloys are veiy popular in the process industries. They are heat- and corrosion-resistant, noncontaminating, and easily fabricated into complex shapes. [Pg.2443]

Niobium finds use in the production of numerous stainless steels for use at high temperatures, and Nb/Zr wires are used in superconducting magnets. The extreme corrosion-resistance of tantalum at normal temperatures (due to the presence of an exceptionally tenacious film of oxide) leads to its application in the construction of chemical plant, especially where it can be used as a liner inside cheaper metals. Its complete inertness to body fluids makes it the ideal material for surgical use in bone repair and internal suturing. [Pg.978]

The elements of Group 5 are in many ways similar to their predecessors in Group 4. They react with most non-metals, giving products which are frequently interstitial and nonstoichiometric, but they require high temperatures to do so. Their general resistance to corrosion is largely due to the formation of surface films of oxides which are particularly effective in the case of tantalum. Unless heated, tantalum is appreciably attacked only by oleum, hydrofluoric acid or, more particularly, a hydrofluoric/nitric acid mixture. Fused alkalis will also attack it. In addition to these reagents, vanadium and niobium are attacked by other hot concentrated mineral acids but are resistant to fused alkali. [Pg.979]


See other pages where Resistance tantalum/niobium is mentioned: [Pg.127]    [Pg.438]    [Pg.438]    [Pg.321]    [Pg.145]    [Pg.131]    [Pg.139]    [Pg.1801]    [Pg.544]    [Pg.646]    [Pg.150]    [Pg.159]    [Pg.443]    [Pg.126]    [Pg.126]    [Pg.128]    [Pg.128]    [Pg.131]    [Pg.364]    [Pg.136]    [Pg.20]    [Pg.26]    [Pg.26]    [Pg.40]    [Pg.47]    [Pg.47]    [Pg.2448]    [Pg.956]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Niobium resistance

Niobium-Tantalum

© 2024 chempedia.info