Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Resin, molecular weight distribution

Quantitizing the effect of these parameters is difficult because of the many different possibilities in the shape fiinction of the base resin molecular weight distribution curve. When the distribution curve is monomodal and log normal, the breadth of the molecular weight distribution is a function of the slope of a line formed by measurement of melt flow at increasing load or shear rate. Extrapolation of this slope defines a shear rate for measuring a base resin viscosity, which correlates with Mooney viscosity of the chlorinated product. [Pg.2827]

Flow Rate Ratio. The FR ratio is used as a rough estimate of the MWD of a resin. Molecular weight distribution can be measured directly by gel permeation chromatography, but this is a time-consuming, technically challenging measurement that is not commonly found in quality control laboratories. Melt-flow ratio measurements are easily done, since the MFR of a resin is the flow index of the sample divided by the melt index of the sample. [Pg.2889]

Fig. 14. Molecular weight characteristics of novolac resins. Shown is the size-exclusion chromatogram for a typical commercial novolac polymer. The unsymmetrical peak shape reflects the multimodal molecular weight distribution of the polymer. Fig. 14. Molecular weight characteristics of novolac resins. Shown is the size-exclusion chromatogram for a typical commercial novolac polymer. The unsymmetrical peak shape reflects the multimodal molecular weight distribution of the polymer.
Melt Viscosity. Viscosities of resins at standard temperatures yield information about molecular weight and molecular weight distribution, as weU as valuable information with respect to appHcation logistics. Some customers prefer to receive resins in molten form. Melt viscosities help to determine the required temperature for a resin to be pumpable. Temperature—viscosity profiles are routinely suppHed to customers by resin manufacturers. In general, a molten viscosity of 1—1.1 Pa-s (1000—1100 cP) or less at process temperatures is convenient for the pumping and handling of molten resin. [Pg.350]

AlCl efficiency (based on g resin/g catalyst) can be markedly improved by polymerizing dry feeds (<10 ppm H2O) with an AlCl /anhydrous HCl system. Proceeding from 250 ppm H2O down to 10 ppm H2O, catalyst efficiency improves from 30.6 to 83.0 (26). Low levels of tertiary hydrocarbyl chlorides have been shown to gready enhance the activity of AlCl, while yielding resins with narrow molecular weight distributions relative to systems employing water or HCl (27). [Pg.353]

Molecular Weight Distribution. In industry, the MWD of PE resins is often represented by the value of the melt flow ratio (MER) as defined in Table 2. The MER value of PE is primarilly a function of catalyst type. Phillips catalysts produce PE resins with a broad MWD and their MER usually exceeds 100 Ziegler catalysts provide resins with a MWD of a medium width (MFR = 25-50) and metallocene catalysts produce PE resins with a narrow MWD (MFR = 15-25). IfPE resins with especially broad molecular weight distributions are needed, they can be produced either by using special mixed catalysts or in a series of coimected polymerization reactors operating under different reaction conditions. [Pg.369]

Chromium Oxide-Based Catalysts. Chromium oxide-based catalysts were originally developed by Phillips Petroleum Company for the manufacture of HDPE resins subsequendy, they have been modified for ethylene—a-olefin copolymerisation reactions (10). These catalysts use a mixed sihca—titania support containing from 2 to 20 wt % of Ti. After the deposition of chromium species onto the support, the catalyst is first oxidised by an oxygen—air mixture and then reduced at increased temperatures with carbon monoxide. The catalyst systems used for ethylene copolymerisation consist of sohd catalysts and co-catalysts, ie, triaLkylboron or trialkyl aluminum compounds. Ethylene—a-olefin copolymers produced with these catalysts have very broad molecular weight distributions, characterised by M.Jin the 12—35 and MER in the 80—200 range. [Pg.399]

The molecular weight distribution of LLDPE resins is usually characterized in industry by the ratios of melt indexes measured in the same apparatus using different loads (2.16, 10.16, and 21.6 kg). The commonly used ratios are melt flow ratio, MFR) and I q/I2. Both of these ratios... [Pg.404]

Phenolic resin substantially increases open time and peel strength of the formulation (80). For example, higher methylol and methylene ether contents of the resin improves peel strength and elevated temperature resistance. Adhesive properties are also influenced by the molecular weight distribution of the phenoHc low molecular weight reduces adhesion (82). [Pg.304]

Fig. 3. Molecular weight distribution curves as determined by gel-permeation chromatography. A represents i9f2v (9-phthahc resins B, highest molecular... Fig. 3. Molecular weight distribution curves as determined by gel-permeation chromatography. A represents i9f2v (9-phthahc resins B, highest molecular...
Some by-product polyethylene waxes have been recently introduced. The feedstock for these materials are mixtures of low molecular weight polyethylene fractions and solvent, generaHy hexane, produced in making polyethylene plastic resin. The solvent is stripped from the mixture, and the residual material offered as polyethylene wax. The products generaHy have a wider molecular weight distribution than the polyethylene waxes synthesised directly, and are offered to markets able to tolerate that characteristic. Some of the by-product polyethylene waxes are distHled under vacuum to obtain a narrower molecular weight distribution. [Pg.317]

Various techniques have been studied to increase sohds content. Hydroxy-functional chain-transfer agents, such as 2-mercaptoethanol [60-24-2], C2HgOS, reduce the probabihty of nonfunctional or monofunctional molecules, permitting lower molecular-weight and functional monomer ratios (44). Making low viscosity acryhc resins by free-radical initiated polymerization requires the narrowest possible molecular-weight distribution. This requires carehil control of temperature, initiator concentration, and monomer concentrations during polymerization. [Pg.338]

Resin viscosity is an important property to consider in handling the resins. It depends on the molecular weight, molecular weight distribution, chemical constitution of the resin and presence of any modifiers or diluents. Since even the diglycidyl ethers are highly viscous materials with viscosities of about 40-100 poise at room temperature it will be appreciated that the handling of such viscous resins can present serious problems. [Pg.749]

The molecular weight and molecular weight distribution may be determined by conventional techniques. As the resins are of comparatively low molecular weight it is possible to measure this by ebullioscopic and by end-group analysis techniques. [Pg.750]

Solid resins have been prepared having a very closely controlled molecular weight distribution." These resins melt sharply to give low-viscosity liquids. It is possible to use larger amounts of filler with the resin with a consequent reduction in cost and coefficient of expansion, so that such resins are useful in casting operations. [Pg.750]

Viscosity. Solvent viscosity of resins is influenced by the concentration of resin, the softening point, the molecular weight distribution, the chemical composition of the resin, and the type of solvent. The higher the resin concentration, the higher the viscosity. For a given concentration, solution viscosity depends on the softening point of the resin (Fig. 22). [Pg.618]

Addition of low molecular weight resins with narrow molecular weight distribution produces compatible resin-elastomer blends, while incompatible blends are obtained with resins having a wide molecular weight distribution. In a recent study... [Pg.623]

Narrow molecular weight distribution Difficult extrusion except where NMWD resins are used. Low melt strength, good melt drawability Fiber/nonwovens Fiber/nonwovens... [Pg.160]


See other pages where Resin, molecular weight distribution is mentioned: [Pg.208]    [Pg.208]    [Pg.121]    [Pg.121]    [Pg.122]    [Pg.350]    [Pg.357]    [Pg.357]    [Pg.368]    [Pg.379]    [Pg.383]    [Pg.390]    [Pg.332]    [Pg.227]    [Pg.449]    [Pg.450]    [Pg.336]    [Pg.336]    [Pg.338]    [Pg.490]    [Pg.619]    [Pg.624]    [Pg.664]    [Pg.743]    [Pg.888]    [Pg.888]    [Pg.894]    [Pg.138]    [Pg.144]    [Pg.189]    [Pg.587]    [Pg.160]    [Pg.163]   


SEARCH



Distribution weight

Molecular distribution

Molecular weight distribution

Molecular weight distribution alkyd resins

Molecular weight resin

© 2024 chempedia.info