Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Redox applications

Highly protective layers can also fonn in gaseous environments at ambient temperatures by a redox reaction similar to that in an aqueous electrolyte, i.e. by oxygen reduction combined with metal oxidation. The thickness of spontaneously fonned oxide films is typically in the range of 1-3 nm, i.e., of similar thickness to electrochemical passive films. Substantially thicker anodic films can be fonned on so-called valve metals (Ti, Ta, Zr,. ..), which allow the application of anodizing potentials (high electric fields) without dielectric breakdown. [Pg.2722]

In resolving complex metal-ion mixtures, more than one masking or demasking process may be utilized with various aliquots of the sample solution, or applied simultaneously or stepwise with a single aliquot. In favorable cases, even four or five metals can be determined in a mixture by the application of direct and indirect masking processes. Of course, not all components of the mixture need be determined by chelometric titrations. For example, redox titrimetry may be applied to the determination of one or more of the metals present. [Pg.1170]

As with acid-base and complexation titrations, redox titrations are not frequently used in modern analytical laboratories. Nevertheless, several important applications continue to find favor in environmental, pharmaceutical, and industrial laboratories. In this section we review the general application of redox titrimetry. We begin, however, with a brief discussion of selecting and characterizing redox titrants, and methods for controlling the analyte s oxidation state. [Pg.341]

Inorganic Analysis Redox titrimetry has been used for the analysis of a wide range of inorganic analytes. Although many of these methods have been replaced by newer methods, a few continue to be listed as standard methods of analysis. In this section we consider the application of redox titrimetry to several important environmental, public health, and industrial analyses. Other examples can be found in the suggested readings listed at the end of this chapter. [Pg.344]

One of the most important applications of redox titrimetry is in evaluating the chlorination of public water supplies. In Method 9.3 an approach for determining the total chlorine residual was described in which the oxidizing power of chlorine is used to oxidize R to 13 . The amount of 13 formed is determined by a back titration with 8203 . [Pg.344]

Another important example of redox titrimetry that finds applications in both public health and environmental analyses is the determination of dissolved oxygen. In natural waters the level of dissolved O2 is important for two reasons it is the most readily available oxidant for the biological oxidation of inorganic and organic pollutants and it is necessary for the support of aquatic life. In wastewater treatment plants, the control of dissolved O2 is essential for the aerobic oxidation of waste materials. If the level of dissolved O2 falls below a critical value, aerobic bacteria are replaced by anaerobic bacteria, and the oxidation of organic waste produces undesirable gases such as CH4 and H2S. [Pg.345]

The following experiments may he used to illustrate the application of titrimetry to quantitative, qtmlitative, or characterization problems. Experiments are grouped into four categories based on the type of reaction (acid-base, complexation, redox, and precipitation). A brief description is included with each experiment providing details such as the type of sample analyzed, the method for locating end points, or the analysis of data. Additional experiments emphasizing potentiometric electrodes are found in Chapter 11. [Pg.358]

When first developed, potentiometry was restricted to redox equilibria at metallic electrodes, limiting its application to a few ions. In 1906, Cremer discovered that a potential difference exists between the two sides of a thin glass membrane when opposite sides of the membrane are in contact with solutions containing different concentrations of H3O+. This discovery led to the development of the glass pH electrode in 1909. Other types of membranes also yield useful potentials. Kolthoff and Sanders, for example, showed in 1937 that pellets made from AgCl could be used to determine the concentration of Ag+. Electrodes based on membrane potentials are called ion-selective electrodes, and their continued development has extended potentiometry to a diverse array of analytes. [Pg.465]

In the previous section we saw how voltammetry can be used to determine the concentration of an analyte. Voltammetry also can be used to obtain additional information, including verifying electrochemical reversibility, determining the number of electrons transferred in a redox reaction, and determining equilibrium constants for coupled chemical reactions. Our discussion of these applications is limited to the use of voltammetric techniques that give limiting currents, although other voltammetric techniques also can be used to obtain the same information. [Pg.527]

Determining Equilibrium Constants for Coupled Chemical Reactions Another important application of voltammetry is the determination of equilibrium constants for solution reactions that are coupled to a redox reaction occurring at the electrode. The presence of the solution reaction affects the ease of electron transfer, shifting the potential to more negative or more positive potentials. Consider, for example, the reduction of O to R... [Pg.528]

Redox flow batteries, under development since the early 1970s, are stUl of interest primarily for utility load leveling applications (77). Such a battery is shown schematically in Figure 5. Unlike other batteries, the active materials are not contained within the battery itself but are stored in separate tanks. The reactants each flow into a half-ceU separated one from the other by a selective membrane. An oxidation and reduction electrochemical reaction occurs in each half-ceU to generate current. Examples of this technology include the iron—chromium, Fe—Cr, battery (79) and the vanadium redox cell (80). [Pg.587]

A number of reductive procedures have found general applicability. a-Azidoketones may be reduced catalytically to the dihydropyrazines (80OPP265) and a direct conversion of a-azidoketones to pyrazines by treatment with triphenylphosphine in benzene (Scheme 55) has been reported to proceed in moderate to good yields (69LA(727)23l). Similarly, a-nitroketones may be reduced to the a-aminoketones which dimerize spontaneously (69USP3453279). The products from this reaction are pyrazines and piperazines and an intermolecular redox reaction between the initially formed dihydropyrazines may explain their formation. Normally, if the reaction is carried out in aqueous acetic acid the pyrazine predominates, but in less polar solvents over-reduction results in extensive piperazine formation. [Pg.185]

The precautions generally applicable to the preparation, exposure, cleaning and assessment of metal test specimens in tests in other environments will also apply in the case of field tests in the soil, but there will be additional precautions because of the nature of this environment. Whereas in the case of aqueous, particularly sea-water, and atmospheric environments the physical and chemical characteristics will be reasonably constant over distances covering individual test sites, this will not necessarily be the case in soils, which will almost inevitably be of a less homogeneous nature. The principal factors responsible for the corrosive nature of soils are the presence of bacteria, the chemistry (pH and salt content), the redox potential, electrical resistance, stray currents and the formation of concentration cells. Several of these factors are interrelated. [Pg.1076]

C. Potentiometric methods. This is a procedure which depends upon measurement of the e.m.f. between a reference electrode and an indicator (redox) electrode at suitable intervals during the titration, i.e. a potentiometric titration is carried out. The procedure is discussed fully in Chapter 15 let it suffice at this stage to point out that the procedure is applicable not only to those cases where suitable indicators are available, but also to those cases, e.g. coloured or very dilute solutions, where the indicator method is inapplicable, or of limited accuracy. [Pg.368]

For chromatographic sorbents it is necessary that the polymeric cover be uniformly distributed over the silica surface and chemically coupled to it. The appropriate introduction of the initiator is one of the decisive steps of this task. The first method (binding to the surface) increases the yield of grafted polymer. However in this case a large amount of homopolymer is formed. This disadvantage could be prevented by the application of hydroperoxide initiators in combination with the proper redox-agents [78-81],... [Pg.161]

Certain polymerizations (e.g.. S, see 3.3.6.1) can be initiated simply by applying heal the initiating radicals are derived from reactions involving only the monomer. More commonly, the initiators are azo-compounds or peroxides that are decomposed to radicals through the application of heal, light, or a redox process. [Pg.64]

A phenomenological model for redox reactions in solution application to aquocobalt(III) systems. [Pg.41]

Besides its widespread use for investigating the mechanism of redox processes, spectroelectrochemistry can be usefiil for analytical purposes. In particular, the simultaneous profiling of optical and electrochemical properties can enhance the overall selectivity of different sensing (30) and detection (31) applications. Such coupling of two modes of selectivity is facilitated by the judicious choice of the operating potential and wavelength. [Pg.44]


See other pages where Redox applications is mentioned: [Pg.108]    [Pg.501]    [Pg.215]    [Pg.895]    [Pg.51]    [Pg.260]    [Pg.1093]    [Pg.108]    [Pg.501]    [Pg.215]    [Pg.895]    [Pg.51]    [Pg.260]    [Pg.1093]    [Pg.2422]    [Pg.20]    [Pg.332]    [Pg.332]    [Pg.312]    [Pg.354]    [Pg.395]    [Pg.585]    [Pg.373]    [Pg.107]    [Pg.397]    [Pg.363]    [Pg.580]    [Pg.446]    [Pg.79]    [Pg.48]    [Pg.89]    [Pg.167]    [Pg.180]    [Pg.33]    [Pg.44]    [Pg.107]    [Pg.135]    [Pg.151]   
See also in sourсe #XX -- [ Pg.2 , Pg.271 ]




SEARCH



© 2024 chempedia.info