Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactivity ratios reactors

The conversion of aromatic monomers relative to C-5—C-6 linear diolefins and olefins in cationic polymerizations may not be proportional to the feedblend composition, resulting in higher resin aromaticity as determined by nmr and ir measurements (43). This can be attributed to the differing reactivity ratios of aromatic and aHphatic monomers under specific Lewis acid catalysis. Intentional blocking of hydrocarbon resins into aromatic and aHphatic regions may be accomplished by sequential cationic polymerization employing multiple reactors and standard polymerization conditions (45). [Pg.354]

In the most common production method, the semibatch process, about 10% of the preemulsified monomer is added to the deionised water in the reactor. A shot of initiator is added to the reactor to create the seed. Some manufacturers use master batches of seed to avoid variation in this step. Having set the number of particles in the pot, the remaining monomer and, in some cases, additional initiator are added over time. Typical feed times ate 1—4 h. Lengthening the feeds tempers heat generation and provides for uniform comonomer sequence distributions (67). Sometimes skewed monomer feeds are used to offset differences in monomer reactivity ratios. In some cases a second monomer charge is made to produce core—shell latices. At the end of the process pH adjustments are often made. The product is then pumped to a prefilter tank, filtered, and pumped to a post-filter tank where additional processing can occur. When the feed rate of monomer during semibatch production is very low, the reactor is said to be monomer starved. Under these... [Pg.26]

Epichlorohydrin Elastomers without AGE. Polymerization on a commercial scale is done as either a solution or slurry process at 40—130°C in an aromatic, ahphatic, or ether solvent. Typical solvents are toluene, benzene, heptane, and diethyl ether. Trialkylaluniinum-water and triaLkylaluminum—water—acetylacetone catalysts are employed. A cationic, coordination mechanism is proposed for chain propagation. The product is isolated by steam coagulation. Polymerization is done as a continuous process in which the solvent, catalyst, and monomer are fed to a back-mixed reactor. Pinal product composition of ECH—EO is determined by careful control of the unreacted, or background, monomer in the reactor. In the manufacture of copolymers, the relative reactivity ratios must be considered. The reactivity ratio of EO to ECH has been estimated to be approximately 7 (35—37). [Pg.555]

Compositionally uniform copolymers of tributyltin methacrylate (TBTM) and methyl methacrylate (MMA) are produced in a free running batch process by virtue of the monomer reactivity ratios for this combination of monomers (r (TBTM) = 0.96, r (MMA) = 1.0 at 80°C). Compositional ly homogeneous terpolymers were synthesised by keeping constant the instantaneous ratio of the three monomers in the reactor through the addition of the more reactive monomer (or monomers) at an appropriate rate. This procedure has been used by Guyot et al 6 in the preparation of butadiene-acrylonitrile emulsion copolymers and by Johnson et al (7) in the solution copolymerisation of styrene with methyl acrylate. [Pg.329]

Samer [104] carried out similar copolymerizations with similar results. An example of his data is given in Fig. 16. Here 2-ethylhexyl acrylate (EHA) was copolymerized with MMA in batch. The miniemulsion polymerizations (two are shown) follow the copolymer equation, while the macroemulsion polymerization gives EHA incorporation that is lower than predicted by the copolymer equation, presumably due to the low concentration of EHA at the locus of polymerization. The dotted hne in Fig. 16 is for a model derived by Samer that accurately predicts the copolymer composition. Samer derived this model by adapting the work of Schuller [149]. Schuller modified the reactivity ratios for the macroemulsion polymerization of water-soluble monomers to take into accoimt that the comonomer concentration at the locus of polymerization is different from the comonomer composition in the reactor due to the water solubilities of the monomers. Samer used the same approach to account for the fact that the comonomer concentration at the locus of polymerization might be different from that of the reactor due to transport limitations of water insoluble comonomers. [Pg.198]

However, this does not preclude mini emulsion copolymerization in a CSTR for extremely water-insoluble comonomers. In spite of the fact that the copolymer composition in the continuous miniemulsion is less than that predicted using the homogeneous copolymerization reactivity ratios, the miniemulsion copolymer might be more uniform than the macroemulsion copolymer, where the possibility of significant droplet nucleation could lead to two separate homopolymers or, at the very best, copolymers of various composition. Therefore, it is very important to use CSTR data to scale up a continuous miniemulsion copolymerization product to take into account the different particle growth kinetics for batch and continuous reactors. [Pg.204]

The production of copolymers leads to some additional constraints to reactor design beyond what is required for homopolymer. The most important of these is composition drift. The reactivity ratios of a monomer mixture define the composition of a copolymer that is instantaneously produced from a given monomer mixture. This is true in a plug flow reactor or a backmixed reactor. However, in the plug flow reactor, the copolymer composition drifts from that produced from the initial monomer composition to that produced by the monomer composition at the end of the polymerization. In contrast, in the backmixed reactor, all copolymer produced is of the same composition, which... [Pg.57]

The copolymer composition may drift during the course of an emulsion copolymerization because of differences in monomer reactivity ratios or water solubilities. Various techniques have been developed to produce a uniform copolymer composition. The feed composition may be continuously or periodically enriched in a particular monomer, to compensate for its lower reactivity. A much more common procedure involves pumping the monomers into the reactor at such a rate that the extent of conversion is always very high [>about 90%]. This way, the polymer composition is always that of the last increment of the monomer feed. [Pg.292]

The most significant differences between perfectly mixed and segregated flow in a CSTR occur in copoly merizalions. In a batch reaction, the copolymer composition varies with conversion, depending on the reactivity ratios and initial monomer feed composition. In a perfectly mixed CSTR, there will be no composition drifts but the distribution of product compositions will broaden as mixing in the reactor approaches segregated flow. [Pg.373]

If r, > 1, ethylene tends to self-propagate. If r, < 1, copolymerization is favored. If r, r 1, the monomers have nearly identical reactivities and comonomer incorporation is highly random. This means that the composition of the copolymer will closely reflect the proportions of ethylene and comonomer charged to the reactor. For EVA, the ethylene reactivity ratio and reactivity ratio for vinyl acetate are very close (r, = 0.97 and rj = 1.02), which translates into uniform distribution of VA in the copolymer (10). [Pg.28]

Reactivity ratios are important in determining reactor "feed" composition of ethylene and comonomer required to produce a copolymer with the target comonomer content. Because the relative proportion of comonomer changes as polymerization proceeds, adjustment of comonomer feed with time may be necessary. A detailed discussion of the derivation of reactivity ratios for copolymerizations has been provided by Stevens (11). [Pg.28]

As mentioned in Chapter 1, ethylene is always the more reactive olefin in systems used to produce copolymers involving a-olefins (LLDPE and VLDPE). An important process consideration for copolymerizations is the reactivity ratio. This ratio may be used to estimate proportions needed in reactor feeds that will achieve the target resin. However, fine tuning is often required to obtain the density or comonomer content desired. Reactivity ratios were discussed previously (Chapter 2) in the context of free radical polymerization of ethylene with polar comonomers. Reactivity ratios are also important in systems that employ transition metal catalysts for copolymerization of ethylene with a-olefins to produce LLDPE. Discussions of derivations and an extensive listing of reactivity ratios for ethylene and the commonly used a-olefins are provided by Krentsel, et al. (1). [Pg.88]

Synthesis. The copolymers were prepared by suspension polymerization using a 1 gal stainless steel reactor operating at the autogenous pressure of vinyl chloride at 50° C. The vinyl chloride (Matheson) was purified by passing the gas over KOH pellets. A 9 1 ratio of water to vinyl chloride was used, the suspending agent being methyl cellulose (Methocel 25 cps, Dow Chemical). Percadox 16 (Noury Chemical Corp.) was the catalyst. Because the calculated reactivity ratios indicated that... [Pg.272]

Temperature control policies have also been suggested to diminish the composition spread in batch reactors (92, 94). However, the low sensitivity of the reactivity ratios to temperature (Figure 7), the poor heat transfer characteristics of reacting polymer mixtures (slow response times) and the considerable excursions in temperature (and, therefore, molecular weights) required to maintain adequate uniformity in composition make the application of these temperature control policies unrealistic. [Pg.112]

Experimental System The copolymerisation of styrene with methyl acrylate in toluene using azo-bis-iso- butyronitrile (AIBN) was selected as the model experimental system because the overall rate of reaction is relatively fast, copolymer analysis is relatively simple using a variety of techniques and the appropriate kinetic and physical constants are available in the literature. This monomer combination also has suitable reactivity ratios (i = 0.76 and r4 =0.175 at 80 C),(18) making control action essential for many different values if compositionally homogeneous polymers are to be prepared at higher conversions in a semi-batch reactor. [Pg.124]

Equation (7.20) predicts the feed composition that would yield an invariant copolymer composition as the conversion proceeds in a batch reactor. It should be noted that comonomer ratios that are near but not equal to the estimated azeotropic value may also produce copolymers whose compositions are constant for all practical purposes. It is seen from Fig. 7.2 that the permissible range of feed compositions for which this "approximate" azeotropy occurs is greater the closer the two reactivity ratios are to each other. [Pg.594]

In addition to the above investigations, free-radical high-pressure polymerizations should also be studied in continuously operated devices for three reasons. (1) Because of the wealth of kinetic information contained in the polymer properties, product characterization is mandatory. Sufficient quantities of polymer, produced under well defined conditions of temperature, pressure, and monomer conversion, are best provided by continuous polymerization, preferably in a continuously stirred tank reactor (CSTR). (2) Copolymerization of monomers that have rather dissimilar reactivity ratios, such as in ethene-acry-late systems, will yield chemically inhomogeneous material if the reaction is carried out in a batch-type reactor up to moderate conversion. To obtain larger quantities of copolymer of analytical value, the copolymerization has to be performed in a CSTR. (3) Technical polymerizations are exclusively run as continuous processes. Thus, in order to stay sufficiently close to the application and to investigate aspects of technical polymerizations, such as testing initiators and initiation strategies, fundamental research into these processes should, at least in part, be carried out in continuously operated devices. [Pg.331]

Plotted in Figure 4.6-9 is the copolymer mole fraction Fma versus the monomer mole fraction /ma for E-MA copolymerizations carried out in a continuously operated reactor [46] at 2000 bar and temperatures of 220, 250, and 290 °C. Total monomer conversion in these reactions is very small, mostly below 1 %. As can be seen from the figure, copolymerization leads to a significant increase in MA content (in going from die monomer mixture to the polymer). From pairs of Fma and /ma values measured at identical pressure and temperature, the two reactivity ratios, rg and Tma. are obtained via eq (4.6-14). [Pg.342]

The error-in-variables method was used to estimate the reactivity ratios. This method was developed by Reilly et al. (57, 58), and it was first applied for the determination of reactivity ratios by O Driscoll, Reilly, and co-workers (59, 60). In this work, a modified version by MacGregor and Sutton (61) adapted by Gloor (62) for a continuous stirred tank reactor was used. The error-in-variables method shows two important advantages compared to the other common methods for the determination of copolymer reactivity ratios, which are statistically incorrect, as for example, Fineman-Ross (63) or Kelen-Tiidos (64). First, it accounts for the errors in both dependent and independent variables the other estimation methods assume the measured values of monomer concentration and copolymer composition have no variance. Second, it computes the joint confidence region for the reactivity ratios, the area of which is proportional to the total estimation error. [Pg.180]

The use of a continuous stirred tank reactor permits one to apply the instantaneous copolymer equation for reactivity ratios estimation. [Pg.180]

Gloor, P. Estimation of Reactivity Ratios Using the Error-in-Variables Method and Data Collected from a Continuous Stirred Tank Reactor, MIPPT-Report, McMaster University, Hamilton, Ontario, Canada, 1987. [Pg.192]

Tip 13 (related to Tip 12) Copolymerization, copolymer composition, composition drift, azeotropy, semibatch reactor, and copolymer composition control. Most batch copolymerizations exhibit considerable drift in monomer composition because of different reactivities (reactivity ratios) of the two monomers (same ideas apply to ter-polymerizations and multicomponent cases). This leads to copolymers with broad chemical composition distribution. The magnirnde of the composition drift can be appreciated by the vertical distance between two items on the plot of the instantaneous copolymer composition (ICC) or Mayo-Lewis (model) equation item 1, the ICC curve (ICC or mole fraction of Mj incorporated in the copolymer chains, F, vs mole fraction of unreacted Mi,/j) and item 2, the 45° line in the plot of versus/j. [Pg.260]

The emulsion copolymerization of vinyl acetate and butyl acrylate has received considerable attention. The butyl acrylate confers improved film forming characteristics to the polymer. The disparities in their water solubilities and of their individual polymerization rates may help to explain the variations in reactivity ratios that have been reported [170,171]. The variation in reactivity ratios may also by related to the following observations The reaction method has an effect on the morphology of the polymer particles. In a batch emulsion process, a butyl acrylate—rich core is formed which is surrounded by a vinyl acetate-rich shell, in a process in which the monomers are fed into the reactor in a semicontinuous manner, particles form with a more uniform distribution of the monomers [172]. The kinetics for a batch process indicates that the initially formed polymer is indeed high in butyl acrylate. As this monomer is used up, eventually a copolymer high in vinyl acetate develops. It is this latter polymer which forms the final shell around the particles. [Pg.267]

If a number of DHPs made up of the same monomers are synthesized in a reactor, each DHP chain will have a different sequence. However, every such sequence belongs to the same statistical distribution determined by die reactivity ratios (Odian, 1991)... [Pg.38]


See other pages where Reactivity ratios reactors is mentioned: [Pg.195]    [Pg.282]    [Pg.519]    [Pg.5]    [Pg.88]    [Pg.90]    [Pg.121]    [Pg.701]    [Pg.195]    [Pg.173]    [Pg.203]    [Pg.58]    [Pg.519]    [Pg.195]    [Pg.373]    [Pg.519]    [Pg.9]    [Pg.11]    [Pg.180]    [Pg.302]    [Pg.703]    [Pg.600]   
See also in sourсe #XX -- [ Pg.35 , Pg.36 , Pg.37 , Pg.38 , Pg.39 , Pg.40 , Pg.41 , Pg.42 ]




SEARCH



Reactivity Reactor

Reactivity ratios

© 2024 chempedia.info