Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reactions thermal cracking

Examples include the hydrogen-bromide reaction, thermal cracking of ethane and n-butane, oxidation of cyclohexane, and the hydrogen-oxygen reaction. [Pg.293]

Reaction heat I should have added that into the above list. If a chemical reaction such as burning wood liberates heat, it is called an exothermic reaction. Thermal cracking of hydrocarbons absorbs heat. That s an endothermic reaction. [Pg.14]

Reaction conditions must be controlled since HF is also an excellent polymerization catalyst. Controlled reaction conditions can alternatively lead to vinyl fluoride or to HFC-152a (CH2CHF2). The latter can be thermally cracked to form vinyl fluoride. [Pg.268]

Hydrogenation of the oxides of carbon to methane according to the above reactions is sometimes referred to as the Sabatier reactions. Because of the high exothermicity of the methanization reactions, adequate and precise cooling is necessary in order to avoid catalyst deactivation, sintering, and carbon deposition by thermal cracking. [Pg.70]

Reactions of /l-Butane. The most important industrial reactions of / -butane are vapor-phase oxidation to form maleic anhydride (qv), thermal cracking to produce ethylene (qv), Hquid-phase oxidation to produce acetic acid (qv) and oxygenated by-products, and isomerization to form isobutane. [Pg.402]

An alternative approach involves the reaction of an alkyl carbamate with a tertiary olefin (89,90). The resultant carbamates are thermally cracked at temperatures of 150—350°C to yield the isocyanate. The isocyanate is generally purified via distillation. [Pg.456]

Visbreaking. Viscosity breaking (reduction) is a mild cracking operation used to reduce the viscosity of residual fuel oils and residua (8). The process, evolved from the older and now obsolete thermal cracking processes, is classed as mild because the thermal reactions are not allowed to proceed to completion. [Pg.203]

Thermal cracking tends to deposit carbon on the catalyst surface which can be removed by steaming. Carbon deposition by this mechanism tends to occur near the entrance of the catalyst tubes before sufficient hydrogen has been produced by the reforming reactions to suppress the right hand side of the reaction. Promoters, such as potash, are used to help suppress cracking in natural gas feedstocks containing heavier hydrocarbons. Carbon may also be formed by both the disproportionation and the reduction of carbon monoxide... [Pg.346]

Alternatively, thermal cracking of acetals or metal-catalyzed transvinylation can be employed. Vinyl acetate or MVE can be employed for transvinylation and several references illustrate the preparation especially of higher vinyl ethers by such laboratory techniques. Special catalysts and conditions are required for the synthesis of the phenol vinyl ethers to avoid resinous condensation products (6,7). Direct reaction of ethylene with alcohols has also been investigated (8). [Pg.514]

Thermal Cracking. Thermal chlorination of ethylene yields the two isomers of tetrachloroethane, 1,1,1,2 and 1,1,2,2. Introduction of these tetrachloroethane derivatives into a tubular-type furnace at temperatures of 425—455°C gives good yields of trichloroethylene (33). In the cracking of the tetrachloroethane stream, introduction of ferric chloride into the 460°C vapor-phase reaction zone improves the yield of trichloroethylene product. [Pg.510]

Physical properties of hexachloroethane are Hsted in Table 11. Hexachloroethane is thermally cracked in the gaseous phase at 400—500°C to give tetrachloroethylene, carbon tetrachloride, and chlorine (140). The thermal decomposition may occur by means of radical-chain mechanism involving -C,C1 -C1, or CCl radicals. The decomposition is inhibited by traces of nitric oxide. Powdered 2inc reacts violentiy with hexachloroethane in alcohoHc solutions to give the metal chloride and tetrachloroethylene aluminum gives a less violent reaction (141). Hexachloroethane is unreactive with aqueous alkali and acid at moderate temperatures. However, when heated with soHd caustic above 200°C or with alcohoHc alkaHs at 100°C, decomposition to oxaHc acid takes place. [Pg.15]

Mechanism. The thermal cracking of hydrocarbons proceeds via a free-radical mechanism (20). Siace that discovery, many reaction schemes have been proposed for various hydrocarbon feeds (21—24). Siace radicals are neutral species with a short life, their concentrations under reaction conditions are extremely small. Therefore, the iategration of continuity equations involving radical and molecular species requires special iategration algorithms (25). An approximate method known as pseudo steady-state approximation has been used ia chemical kinetics for many years (26,27). The errors associated with various approximations ia predicting the product distribution have been given (28). [Pg.434]

Cracking temperatures are somewhat less than those observed with thermal pyrolysis. Most of these catalysts affect the initiation of pyrolysis reactions and increase the overall reaction rate of feed decomposition (85). AppHcabiUty of this process to ethane cracking is questionable since equiUbrium of ethane to ethylene and hydrogen is not altered by a catalyst, and hence selectivity to olefins at lower catalyst temperatures may be inferior to that of conventional thermal cracking. SuitabiUty of this process for heavy feeds like condensates and gas oils has yet to be demonstrated. [Pg.443]

Dente and Ranzi (in Albright et al., eds.. Pyrolysis Theory and Industrial Practice, Academic Press, 1983, pp. 133-175) Mathematical modehng of hydrocarbon pyrolysis reactions Shah and Sharma (in Carberry and Varma, eds.. Chemical Reaction and Reaction Engineering Handbook, Dekker, 1987, pp. 713-721) Hydroxylamine phosphate manufacture in a slurry reactor Some aspects of a kinetic model of methanol synthesis are described in the first example, which is followed by a second example that describes coping with the multiphcity of reactants and reactions of some petroleum conversion processes. Then two somewhat simph-fied industrial examples are worked out in detail mild thermal cracking and production of styrene. Even these calculations are impractical without a computer. The basic data and mathematics and some of the results are presented. [Pg.2079]

Depending on its rank, coal can be dissolved in as little as one minute in the temperature range of 623 to 723 K (662 to S42°F) in suitable solvents, which are assumed to promote thermal cracking of the coal into smaller, more readily dissolved fragments. These fragments may be stabilized through reactions with one another or with hydrogen supplied either by a donor solvent or from a gas phase. [Pg.2373]

Homogeneous reactions are those in which the reactants, products, and any catalysts used form one continuous phase (gaseous or liquid). Homogeneous gas phase reactors are almost always operated continuously, whereas liquid phase reactors may be batch or continuous. Tubular (pipeline) reactors arc normally used for homogeneous gas phase reactions (e.g., in the thermal cracking of petroleum of dichloroethane lo vinyl chloride). Both tubular and stirred tank reactors are used for homogeneous liquid phase reactions. [Pg.135]

By the mid-1930s, catalytic technology entered into petroleum refining. To a greater extent than thermal cracking, catalysis permitted the close control of the rate and direction of reaction. It minimized the formation of unwanted side reactions, such as carbon formation, and overall improved the yield and quality of fuel output. [Pg.990]

Thermal cracking is a function of temperature and time. The reaction occurs when hydrocarbons in the absence of a catalyst are exposed to high temperatures in the range of 800°F to 1,200°F (425°C to 650°C). [Pg.127]

One of the drawbacks of thermal cracking in an FCC is that a high percentage of the olefins formed during intermediate reactions polymerize and condense directly to coke. [Pg.128]

Both the Bronsted and Lewis acid sites on the catalyst generate carbenium ions. The Bronsted site donates a proton to an olefin molecule and the Lewis site removes electrons from a paraffin molecule. In commercial units, olefins come in with the feed or are produced through thermal cracking reactions. [Pg.132]


See other pages where Reactions thermal cracking is mentioned: [Pg.618]    [Pg.618]    [Pg.420]    [Pg.156]    [Pg.74]    [Pg.251]    [Pg.506]    [Pg.523]    [Pg.202]    [Pg.360]    [Pg.181]    [Pg.422]    [Pg.365]    [Pg.271]    [Pg.280]    [Pg.433]    [Pg.44]    [Pg.2079]    [Pg.2244]    [Pg.86]    [Pg.229]    [Pg.291]    [Pg.337]    [Pg.631]    [Pg.56]    [Pg.69]    [Pg.72]    [Pg.125]   
See also in sourсe #XX -- [ Pg.126 , Pg.283 ]




SEARCH



Cracking reactions

Cracking, thermal reaction chambers

Radical Reactions for the Thermal Cracking

Reactions of thermal cracking

Thermal cracking

Thermal cracking reaction mechanisms

Thermal reactions

Thermal reactions - catalytic steam cracking

© 2024 chempedia.info