Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction complexes, synthetic

For the preparation of divinyl ketones, as required for the Nazarov reaction, various synthetic routes have been developed. A large variety of substituted divinyl ketones, including vinylsilane derivatives, can thus be prepared. The Nazarov cyclization, and especially the vinylsilane variant, has found application for the synthesis of complex cyclopentanoids. [Pg.208]

Diels-Alder reactions are one of the most fundamental and useful reactions in synthetic organic chemistry. Various dienes and dienophiles have been employed for this useful reaction.1 Nitroalkenes take part in a host of Diels-Alder reactions in various ways, as outlined in Scheme 8.1. Various substituted nitroalkenes and dienes have been employed for this reaction without any substantial improvement in the original discovery of Alder and coworkers.2 Nitrodienes can also serve as 4ti-components for reverse electron demand in Diels-Alder reactions. Because the nitro group is converted into various functional groups, as discussed in Chapters 6 and 7, the Diels-Alder reaction of nitroalkenes has been frequently used in synthesis of complex natural products. Recently, Denmark and coworkers have developed [4+2] cycloaddition using nitroalkenes as heterodienes it provides an excellent method for the preparation of heterocyclic compounds, including pyrrolizidine alkaloids. This is discussed in Section 8.3. [Pg.231]

Well-defined complicated macromolecular structures require complex synthetic procedures/techniques and characterization methods. Recently, several approaches leading to hyperbranched structures have been developed and will be the focus of this section. The preparation of hyperbranched poly(siloxysilane) has been reported [198] and is based on methylvinyl-bis(dimethyl siloxysilane), an A2B type monomer, and a progressive hydrosi-lylation reaction with platinum catalysts. An appropriate hydrosilylation reaction on the peripheral - SiH groups led to the introduction of polymeric chain (PIB, PEO) or functional groups (epoxy, - NH2) [199]. [Pg.123]

Finally, the most complex synthetic reaction clearly catalysed by RNA molecules generated by in vitro selection is the formation of the C-N bond of a nucleoside (Scheme 7), from 4-thiouracil and most of the natural substrate for the natural (uracil phos-phoribotransferase) reaction.1461. (Thiouracil was used because it is easily tagged by alkylation on sulfur.) The catalytic RNAs produced by 11 rounds of selection required Mg++ cations and had kcat as high as 0.13 min-1,with kcaJKM at least 107 times greater than the (undetectable) uncatalyzed reaction. Once again these systems are convincing, rather efficient enzyme mimics. [Pg.348]

The present volume contains 13 chapters written by experts from 11 countries, and treats topics that were not covered, or that are complementary to topics covered in Volume 1. They include chapters on mass spectra and NMR, two chapters on photochemistry complementing an earlier chapter on synthetic application of the photochemistry of dienes and polyenes. Two chapters deal with intermolecular cyclization and with cycloadditions, and complement a chapter in Volume 1 on intramolecular cyclization, while the chapter on reactions of dienes in water and hydrogen-bonding environments deals partially with cycloaddition in unusual media and complements the earlier chapter on reactions under pressure. The chapters on nucleophiliic and electrophilic additions complements the earlier chapter on radical addition. The chapter on reduction complements the earlier ones on oxidation. Chapters on organometallic complexes, synthetic applications and rearrangement of dienes and polyenes are additional topics discussed. [Pg.1198]

For the mixed aldol reaction to be of value in synthetic work, it is necessary to restrict the number of combinations. This can be accomplished as follows. First, if one of the materials has no a-hydrogens, then it cannot produce an enoiate anion, and so cannot function as the nucleophile. Second, in aldehyde plus ketone combinations, the aldehyde is going to be a better electrophile, so reacts preferentially in this role. A simple example of this approach is the reaction of benzaldehyde with acetone under basic conditions. Such reactions are synthetically important as a means of increasing chemical complexity by forming new carbon-carbon bonds. [Pg.361]

The carbonyl undergoes a variety of complex formation reactions, involving partial or total replacement of CO groups with other donors. Many reactions have synthetic applications. Such donors include pyridine (py), diglyme, toluene, aniline, cycloheptatriene, alkyl disulfide and metal cyctopentadiene. A few examples are given below ... [Pg.589]

Oxazoline-directed aromatic substitution and addition reactions provide synthetic chemists with powerful tools for the construction of complex aromatic compounds. Since the last authoritative review by Meyers, these technologies have matured and found widespread applications in organic synthesis. While there has been somewhat limited methodological research in this area in the intervening years, one particularly exciting new development is the diastereoselective ortho-metalations directed by chiral oxazolines. Sections 8.3.9.1-8.3.9.3 will discuss these new developments as well as new synthetic applications of these reactions. [Pg.448]

Early studies of these complexes focused primarily on the investigation of their oxygen-atom-transfer reactivity. Relatively little success was achieved, however. The peroxo fragments in these complexes exhibit nucleophilic character, and, therefore, they are generally ineffective oxidants for reactions with synthetically interesting electron-rich substrates such as alkenes and sulfides. Most of the known reactivity involves electrophilic substrates that, in many cases, insert into the Pd-0 bond of peroxopalladium(II) species (Fig. 4) [105,118]. [Pg.88]

Hydrolase-catalyzed domino reactions incorporating a resolution and a subsequent cycloaddition reaction have been described [95-97]. This constitutes an attractive approach to complex synthetic intermediates. For example, the l-(3-methyl-2-furyl)]propanol roc-93 reacts with ethoxyvinyl methyl fumarate (94) catalyzed by Lipase LIP (from Pseudomonas aeruginosa) to furnish a dienophilic fumarate ester, which spontaneously undergoes an intramolecular Diels-Alder reaction with the furan moiety furnishing exclusively the syn-adduct, the oxabicy-clohexene 95 in excellent along with the remaining alcohol S-96 (Scheme 4.31) [95]. A similar approach has been used for a procedure that includes a series of domino reactions that includes dynamic kinetic resolution of the 3-vinylcyclohex-... [Pg.97]

The tetradentate ligand forms monomeric square planar complexes. Synthetic and kinetic studies reveal that the coordinated mercapto group may be converted into the coordinated thioether function without breaking the metal-sulfur bond. The nucleophilic power of the coordinated mercapto group exceeds that of RSH, but depends on the metal atom. Bridging protects the sulfur atom from alkylation. In the case of nickel(ll), alkylation is accompanied by expansion of the coordination number of the nickel from 4 to 6. Ligand reactions have led to the synthesis of planar ligands completely cydized about the metal ion. [Pg.129]

Nickel(II) complexes with /3-ketoamines are, in general, easily prepared. The most useful and general synthetic methods are the following (i) reaction of the preformed ligands with nickel salts in basic solution using water, alcohol or their mixtures as medium (ii) ligand exchange reactions (iii) template reactions. Complexes of type (329) may be sensitive to moisture and are prepared in anhydrous conditions. [Pg.204]

Since the start of the twentieth century, steroids have continued to be the focus of the research activities of natural product chemists, synthetic chemists, biochemists and clinicians. The reasons are several-fold and related to the fascination of the chemical complexity of sterols and their biochemical functions in living organisms. Sterols and steroids are excellent compounds for the organic chemists to practise their skills upon in the development of new reactions and synthetic procedures. The biological functions of sterols, for example as an essential constituent of membranes, have proved thought-provoking to lipid biochemists. [Pg.702]

The reduction properties of the cobalamins also differ from the normal Co111 complexes in that they can be readily reduced to the Co1 state, e.g. as in the methylation reaction (9). The electrochemical properties of the cobalamins have recently been reviewed.151 Several reviews are also available concerning their biological activity, the mechanisms of reactions, and synthetic analogues.150,152-155... [Pg.984]

The so-called crossed Cannizzaro reaction is synthetically more useful than the Cannizzaro reaction itself, as it can be applied for the preparation of alcohols in high yields, without loss of 50% of the product in the formation of the corresponding carboxylic acid. Typically, paraformaldehyde is used as a sacrificial reducing agent, together with the carbonyl compound which is to be transformed into the alcohol. The reaction thus serves as an alternative method to the use of complex hydrides for the reduction of aromatic aldehydes. [Pg.85]

Many stable metal complexes of arynes are known but in most of their reactions of synthetic interest, the yields are poor. For example, thermolysis of titanocene (Cp2TiPh2) at 80-100 C gives rise to a tita-nium-benzyne complex which reacts with molecular nitrogen to afford aniline with low efficiency.29 However, procedures are available for in situ generation of zirconium complexes (14) and for their coupling reactions to synthesize functionalized aromatic compounds in preparatively useful yields (Scheme I).30 Whether such complexes should be regarded as ir-bonded benzynes or o-bonded o-phenylenes, remains a debatable point.31... [Pg.485]

As noted in the introduction, in contrast to attack by nucleophiles, attack of electrophiles on saturated alkene-, polyene- or polyenyl-metal complexes creates special problems in that normally unstable 16-electron, unsaturated species are formed. To be isolated, these species must be stabilized by intramolecular coordination or via intermolecular addition of a ligand. Nevertheless, as illustrated in this chapter, reactions of significant synthetic utility can be developed with attention to these points. It is likely that this area will see considerable development in the future. In addition to refinement of electrophilic reactions of metal-diene complexes, synthetic applications may evolve from the coupling of carbon electrophiles with electron-rich transition metal complexes of alkenes, alkynes and polyenes, as well as allyl- and dienyl-metal complexes. Sequential addition of electrophiles followed by nucleophiles is also viable to rapidly assemble complex structures. [Pg.712]

In contrast, the need to evaluate the relative rates of competing radical reactions pervades synthetic planning of radical additions and cyclizations. Further, absolute rate constants are now accurately known for many prototypical radical reactions over wide temperature ranges.19,33 3S These absolute rate constants serve to calibrate a much larger body of known relative rates of radical reactions.33 Because rates of radical reactions show small solvent dependence, rate constants that are measured in one solvent can often be applied to reactions in another, especially if the two solvents are similar in polarity. Finally, because the effects of substituents near a radical center are often predictable, and because the effects of substituents at remote centers are often negligible, rate constants measured on simple compounds can often provide useful models for the reactions of complex substrates with similar substitution patterns. [Pg.722]

Allylation reactions with allyltributylstannane128 are now routine (Scheme 38) and have been used to advantage in complex synthetic endeavors. The experimental procedures developed by Keck are popu-... [Pg.743]


See other pages where Reaction complexes, synthetic is mentioned: [Pg.2]    [Pg.60]    [Pg.51]    [Pg.261]    [Pg.164]    [Pg.138]    [Pg.7]    [Pg.386]    [Pg.153]    [Pg.118]    [Pg.30]    [Pg.805]    [Pg.344]    [Pg.12]    [Pg.70]    [Pg.69]    [Pg.17]    [Pg.59]    [Pg.171]    [Pg.359]    [Pg.7]    [Pg.807]    [Pg.448]    [Pg.411]    [Pg.90]    [Pg.806]    [Pg.65]    [Pg.654]    [Pg.665]    [Pg.155]   
See also in sourсe #XX -- [ Pg.50 ]




SEARCH



Synthetic complexes

Synthetic reactions

© 2024 chempedia.info