Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cobalamin also

The reduction properties of the cobalamins also differ from the normal Co111 complexes in that they can be readily reduced to the Co1 state, e.g. as in the methylation reaction (9). The electrochemical properties of the cobalamins have recently been reviewed.151 Several reviews are also available concerning their biological activity, the mechanisms of reactions, and synthetic analogues.150,152-155... [Pg.984]

There is reason to conclude that vitamin deficiency might contribute to arteriosclerosis. There is a correlation between elevated homocysteine levels and incidence of cardiovascular disease (59). There is debate as to whether homocysteine contributesto the dam e of cells on the interior of blood vessel or whether homocysteine is a marker of intensive cell repair and formation of replacement cells. Nevertheless, administration of pyridoxine, folic acid, and (yanocobalamin are being recommended along with the two antioxidant vitamins, a-tocopherol and ascorbic acid for arteriosclerosis. Vitamin Bg is required for two of the steps in the catabolism of homocysteine to succinyl CoA (Fig. 8.52). Note in Fig. 8.52 (bottom) that biotin and a coenzyme form of cobalamin also are required for... [Pg.399]

In the methionine cycle, cobalamin also plays a central role, as the methyl group of 5-methyltetrahydrofolate is first transferred to the cobalamin molecule and then further transferred to homocysteine to form methionine. This reaction explains the close connection of folate and cobalamin metabolism, as 5-methyltetrahydrofolate cannot be used for other reactions over than the methylation of homocysteine. Mild deficiency of folate and cobalamin is also associated with cognitive decline due to the neurotoxic effects of increased... [Pg.56]

Measurement of cobalamin (also known as vitamin B12) is used in relation to nutritional issues and as a research tool. [Pg.464]

Complexes of the composition RCo (dioximeH)2L (R = alkyl, L = neutral ligand) and their parent complexes with BR2 bridges RCo(dioxime-BR2)2L 127 (Fig. 33) are known as organocobaloximes [173-178] and have received attention being models for vitamin B12 (cobalamines) [183]. A series of related complexes of the composition Fe (dioxime-BR2)LL 128 (Fig. 33) without the metal-carbon bond is also known [179, 180]. [Pg.35]

Schrauzer and co-workers have studied the kinetics of alkylation of Co(I) complexes by organic halides (RX) and have examined the effect of changing R, X, the equatorial, and axial ligands 148, 147). Some of their rate constants are given in Table II. They show that the rates vary with X in the order Cl < Br < I and with R in the order methyl > other primary alkyls > secondary alkyls. Moreover, the rate can be enhanced by substituents such as Ph, CN, and OMe. tert-Butyl chloride will also react slowly with [Co (DMG)2py] to give isobutylene and the Co(II) complex, presumably via the intermediate formation of the unstable (ert-butyl complex. In the case of Co(I) cobalamin, the Co(II) complex is formed in the reaction with isopropyl iodide as well as tert-butyl chloride. Solvent has only a slight effect on the rate, e.g., the rate of reaction of Co(I) cobalamin... [Pg.353]

The organo-corrinoids show similar behavior, but also additional complications. Rate constants have been determined 84) for the attack of mercury(II) acetate on various organocobalt cobinamides (X = H2O or absent) and cobalamins (X = 5,6-dimethylbenziminazole). The first complication, which has to be born in mind when comparing the cobinamides with the cobalamins or DMG complexes, is that the organocobin-amides are partly (R = vinyl and methyl) or wholly (R = Et, -Pr, t-Pr,... [Pg.422]

Fukui et /. have found that acetylcobinamide reacts faster than the cobalamin with hydroxide (t,/2 = 4 and 30 min, respectively, in 0.05 N KOH) (67). It is not known whether the cobinamide is five- or six-coordinate, but these relative rates establish the labilizing effect of the trans-axial ligand for heterolysis to give Co(I) as HjO or none > 5,6-dimethylbenziminazole (see also Section B,3). [Pg.426]

Enzymatic methylation of homocysteine (HSCHjCHjCHNHjCOOH) by methylcobalamin to give methionine (CH3SCH2CH2CHNH2COOH) was discovered in 1962 by Woods and co-workers, who also noticed the occurrence of a much slower, nonenzymatic reaction giving the same products. Methylcobinamide showed the same activity as the cobalamin in both the enzymatic and nonenzymatic reactions (72, 7/). It was subsequently discovered that HS, MeS , PhS , and w-BuS will dealkylate a variety of methyl complexes [DMG, DMG-BF2, DPG, G, salen, (DO)(DOH)pn, cobalamin] and even ethyl-Co(DMG)2 complexes to give the thioethers, and it was suggested that the reaction involved transfer of the carbonium ion to the attacking thiolate 161, 164), e.g.,... [Pg.426]

Catalytic hydrogenation with platinum liberates the hydrocarbon from methylcobalamin (57) and from alkyl-Co-DMG complexes (161), but not from pentacyanides with primary alkyl, vinyl, or benzyl ligands, though the cr-allyl complex yields propylene (109). Sodium sand gives mixtures of hydrocarbons with the alkyl-Co-salen complexes (64). Dithioerythritol will liberate methane from a variety of methyl complexes [cobalamin, DMG, DMG-BF2, G, DPG, CHD, salen, and (DO)(DOH)pn] (156), as will 1,4-butanedithiol from the DMG complex (157), and certain unspecified thiols will reduce DMG complexes with substituted alkyl ligands (e.g., C0-CH2COOH ->CH3C00H) (163, 164). Reaction with thiols can also lead to the formation of thioethers (see Section C,3). [Pg.432]

It soon became apparent that the biologically active forms of Vitamin Bj.2 contained the unique Co—C-a-bond, and the instability of these covalent compounds to visible light facilitated observations on the occurrence of functional corrinoids in a number of enzymes. Deoxyadenosyl-cobalamin was found to be the most abundant corrinoid in bacteria (24) and in mammalian liver (25). Methylcobalamin was found in Escherichia coli (26), calf liver and human blood plasma (27), and also in a number of Clostridia (28). [Pg.55]

Ribonucleotide reductase differs from the other 5 -deoxyadenosyl-cobalamin requiring enzymes in a number of respects. Hydrogen is transferred from coenzyme to the C2-position of the ribose moiety without inversion of configuration. Also since lipoic acid functions in hydrogen transfer, exchange with solvent protons takes place. Furthermore, exchange between free and bound 5 -deoxyadenosylcobalamin occurs rapidly during catalysis. Evidence for a Co(I)-corrin as an intermediate for this reduction is presented in our section on electron spin resonance. [Pg.66]

Hill et al. (127) reported the first proton magnetic resonance work on a series of cobalamins. This work was carried out at 60 MHz and the spectra are, therefore, of quite low resolution. Subsequently, this work was extended to a wider variety of molecules and also spectra were recorded at 100 MHz (128). Five low field resonances and those of the metal alkyl groups were assigned. Some representative chemical shifts for the low field resonances are shown in Table 1. [Pg.86]

There is some evidence that the iron-sulfur protein, FhuF, participates in the mobilization of iron from hydroxamate siderophores in E. coli (Muller et ah, 1998 Hantke, K. unpublished observations). However, a reductase activity of FhuF has not been demonstrated. Many siderophore-iron reductases have been shown to be active in vitro and some have been purified. The characterization of these reductases has revealed them to be flavin reductases which obtain the electrons for flavin reduction from NAD(P)H, and whose main functions are in areas other than reduction of ferric iron (e.g. flavin reductase Fre, sulfite reductase). To date, no specialized siderophore-iron reductases have been identified. It has been suggested that the reduced flavins from flavin oxidoreductases are the electron donors for ferric iron reduction (Fontecave et ah, 1994). Recently it has been shown, after a fruitless search for a reducing enzyme, that reduction of Co3+ in cobalamin is achieved by reduced flavin. Also in this case it was suggested that cobalamins and corrinoids are reduced in vivo by flavins which may be generated by the flavin... [Pg.106]

The example of nitrogen lines in the spectrum of cobalamin points to the necessity of also writing out resonance conditions for the presence of ligand hyperfine interaction. In general we have ... [Pg.78]

Formally, this procedure is correct only for spectra that are linear in the frequency, that is, spectra whose line positions are caused by the Zeeman interaction only, and whose linewidths are caused by a distribution in the Zeeman interaction (in g-values) only. Such spectra do exist low-spin heme spectra (e.g., cytochrome c cf. Figure 5.4F) fall in this category. But there are many more spectra that also carry contributions from field-independent interactions such as hyperfine splittings. Our frequency-renormalization procedure will still be applicable, as long as two spectra do not differ too much in frequency. In practice, this means that they should at least be taken at frequencies in the same band. For a counter-example, in Figure 5.6 we plotted the X-band and Q-band spectra of cobalamin (dominated by hyperfine interactions) normalized to a single frequency. To construct difference spectra from these two arrays obviously will generate nonsensical results. [Pg.105]

Ashby and Craig72 reported that MeSn3+ and small amounts of Me2Sn2+ are also produced when a baker s yeast (Saccharomyces cerevisiae) is incubated with tin(II) compounds including tin(II) oxalate, tin(II) sulfide and various tin amino acid complexes. Tin(II) chloride and tin(II) amino acid complexes were methylated by methyl-cobalamin, under conditions of chloride ion concentrations and pH relevant to the natural environment73. The main identified product of all reactions was monomethyltin. [Pg.890]

Methionine synthase deficiency (cobalamin-E disease) produces homocystinuria without methylmalonic aciduria 677 Cobalamin-c disease remethylation of homocysteine to methionine also requires an activated form of vitamin B12 677 Hereditary folate malabsorption presents with megaloblastic anemia, seizures and neurological deterioration 678... [Pg.667]

Cobalamin-c disease remethylation of homocysteine to methionine also requires an activated form of vitamin B12. In the absence of normal B12 activation, homocystinuria results from a failure of normal vitamin B12 metabolism. Complementation analysis classifies defects in vitamin B12 metabolism into three groups cblC (most common), cblD and cblF. Most individuals become ill in the first few months or weeks of life with hypotonia, lethargy and growth failure. Optic atrophy and retinal changes can occur. Methylmalonate excretion is excessive, but less than in methylmalonyl-CoA mutase deficiency, and without ketoaciduria or metabolic acidosis. [Pg.677]


See other pages where Cobalamin also is mentioned: [Pg.87]    [Pg.166]    [Pg.87]    [Pg.166]    [Pg.113]    [Pg.114]    [Pg.789]    [Pg.358]    [Pg.385]    [Pg.409]    [Pg.420]    [Pg.421]    [Pg.423]    [Pg.424]    [Pg.432]    [Pg.491]    [Pg.48]    [Pg.101]    [Pg.102]    [Pg.102]    [Pg.1195]    [Pg.182]    [Pg.59]    [Pg.75]    [Pg.59]    [Pg.321]    [Pg.337]    [Pg.489]    [Pg.231]   


SEARCH



Cobalamine

Cobalamines

Cobalamins

© 2024 chempedia.info