Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixed aldol reactions

The dimer of 1-methyl- -pyrroline (39) was obtained by reduction of N-methylpyrrole with zinc and hydrochloric acid (132) and, together with the trimer, by mercuric acetate dehydrogenation of N-methylpyrrolidine (131). J -Pyrroline-N-oxides form dimers in a similar manner (302). Treatment of 1,2-dimethyl-zl -piperideine with formaldehyde, producing l-methyl-3-acetylpiperidine (603), serves as an example of a mixed aldol reaction (Scheme 18). [Pg.298]

Stork and Takahashi took -glyceraldehyde synthon from the chiral pool and condensed it with methyl oleate, using lithium diisopropyl amide as catalyst for the mixed aldol reaction, leading to The olefinic linkage is a latent form... [Pg.6]

Until now, we ve considered only symmetrical aldol reactions, in which the two carbonyl components have been the same. What would happen, though, if a mixed aldol reaction were carried out between two different carbonyl partners ... [Pg.885]

In general, a mixed aldol reaction between two similar aldehyde or ketone partners leads to a mixture of four possible products. For example, base treatment of a mixture of acetaldehyde and propanal gives a complex product mixture containing two "symmetrical" aldol products and two "mixed" aldol products. Clearly, such a reaction is of no practical value. [Pg.885]

On the other hand, mixed aldol reactions can lead cleanly to a single product if either of two conditions is met ... [Pg.885]

I If one of the carbonyl partners contains no or hydrogens, and thus can t form an enolate ion to become a donor, but does contain an unhindered carbonyl group and so is a good acceptor of nucleophiles, then a mixed aldol reaction is likely to be successful. This is the case, for instance, when either benz-aldehyde or formaldehyde is used as one of the carbonyl partners. [Pg.885]

G If one of the carbonyl partners is much more acidic than the other and so is transformed into its enolate ion in preference to the other, then a mixed aldol reaction is likely to be successful. Ethyl acetoacetate, for instance, is completely converted into its enolate ion in preference to enolate ion formation from monocarbonyl partners. Thus, aldol condensations of monoketones with ethyl acetoacetate occur preferentially to give the mixed product. [Pg.886]

The situation can be summarized by saying that a mixed aldol reaction leads to a mixture of products unless one of the partners either has no a hydrogens but is a good electrophilic acceptor (such as benzaldehyde) or is an unusually acidic nucleophilic donor (such as ethyl acetoacetate). [Pg.886]

Problem 23.8 Which of the following compounds can probably be prepared by a mixed aldol reaction Show the reactants you would use in each case. [Pg.886]

Microwaves, electromagnetic spectrum and. 419 Mincralocorticoid, 1083 Minor groove (DNA), 1104-1105 Mitomycin C, structure of, 970 Mixed aldol reaction, 885-886 requirements for. 885-886 Mixed Claisen condensation reaction, 890-891... [Pg.1306]

In ToUens reaction, an aldehyde or ketone containing an a hydrogen is treated with formaldehyde in the presence of Ca(OH)2 or a similar base. The first step is a mixed aldol reaction (16-38). [Pg.1231]

The enolates of other carbonyl compounds can be used in mixed aldol reactions. Extensive use has been made of the enolates of esters, thiol esters, amides, and imides, including several that serve as chiral auxiliaries. The methods for formation of these enolates are similar to those for ketones. Lithium, boron, titanium, and tin derivatives have all been widely used. The silyl ethers of ester enolates, which are called silyl ketene acetals, show reactivity that is analogous to silyl enol ethers and are covalent equivalents of ester enolates. The silyl thioketene acetal derivatives of thiol esters are also useful. The reactions of these enolate equivalents are discussed in Section 2.1.4. [Pg.78]

Mixed condensations of esters are subject to the same general restrictions as outlined for mixed aldol reactions (Section 2.1.2). One reactant must act preferentially as the acceptor and another as the nucleophile for good yields to be obtained. Combinations that work best involve one ester that cannot form an enolate but is relatively reactive as an electrophile. Esters of aromatic acids, formic acid, and oxalic acid are especially useful. Some examples of mixed ester condensations are shown in Section C of Scheme 2.14. Entries 9 and 10 show diethyl oxalate as the acceptor, and aromatic esters function as acceptors in Entries 11 and 12. [Pg.150]

An effective synthesis of 2-methylthio-5-amidofurans 71 involves a Pummerer induced cyclization of imidodithioacetals, which can be prepared by a mixed aldol reaction of the N-... [Pg.144]

The aldol reaction is probably one of the most important reactions in organic synthesis. In many industrially important hydroformylation processes selfcondensation of aldehydes is observed. Sometimes this consecutive reaction is favored as in the production of 2-ethyl hexanol. But synthetic applications of tandem hydroformylation/aldol reactions seem to be limited due regiose-lectivity problems of a mixed aldol reaction (Scheme 28). However, various tandem hydroformylation/intramolecular mixed aldol reactions have been described. [Pg.93]

The aldol reaction as formulated above involves two molecules of the starting substrate. However, by a consideration of the mechanism, one can see that different carbonyl compounds might be used as nucleophile or electrophile. This would be termed a mixed aldol reaction or crossed aldol reaction. However, if one merely reacted, say, two aldehydes together under basic conditions, one would get a... [Pg.361]

For the mixed aldol reaction to be of value in synthetic work, it is necessary to restrict the number of combinations. This can be accomplished as follows. First, if one of the materials has no a-hydrogens, then it cannot produce an enoiate anion, and so cannot function as the nucleophile. Second, in aldehyde plus ketone combinations, the aldehyde is going to be a better electrophile, so reacts preferentially in this role. A simple example of this approach is the reaction of benzaldehyde with acetone under basic conditions. Such reactions are synthetically important as a means of increasing chemical complexity by forming new carbon-carbon bonds. [Pg.361]

An alternative approach to mixed aldol reactions, and the one usually preferred, is to carry out a two-stage process, forming the enolate anion first using a strong base like EDA (see Section 10.2). The first step is essentially irreversible, and the electrophile is then added in the second step. An aldol reaction between butan-2-one and acetaldehyde exemplifies this approach. Note also that the large base EDA selectively removes a proton from the least-hindered position, again restricting possible combinations (see Section 10.2). [Pg.362]

Both the aldol and reverse aldol reactions are encountered in carbohydrate metabolic pathways in biochemistry (see Chapter 15). In fact, one reversible transformation can be utilized in either carbohydrate biosynthesis or carbohydrate degradation, according to a cell s particular requirement. o-Fructose 1,6-diphosphate is produced during carbohydrate biosynthesis by an aldol reaction between dihydroxyacetone phosphate, which acts as the enolate anion nucleophile, and o-glyceraldehyde 3-phosphate, which acts as the carbonyl electrophile these two starting materials are also interconvertible through keto-enol tautomerism, as seen earlier (see Section 10.1). The biosynthetic reaction may be simplihed mechanistically as a standard mixed aldol reaction, where the nature of the substrates and their mode of coupling are dictated by the enzyme. The enzyme is actually called aldolase. [Pg.363]

We saw the possibilities for a mixed aldol reaction above, in which the reaction could become useful if we restricted the number of couplings possible (see Section 10.3). The same considerations can be... [Pg.382]

Alternatively, and much more satisfactory from a synthetic point of view, it is possible to carry out a two-stage process, forming the enolate anion first. We also saw this approach with a mixed aldol reaction (see Section 10.3). Thus, ethyl acetate could be converted into its enolate anion by reaction with the strong base EDA in a reaction that is essentially irreversible (see Section 10.2). [Pg.383]

The first reaction involves a ketone reaction with an aldehyde under basic conditions, so enolate anion chemistry is likely. This is a mixed aldol reaction the acetone has acidic a-hydrogens to form an enolate anion, and the aldehyde is the more reactive electrophile. The reaction is then driven by the ability of the intermediate alcohol to dehydrate to a conjugated ketone. [Pg.663]

Aldol addition and condensation reactions involving two different carbonyl compounds are called mixed aldol reactions. For these reactions to be useful as a method for synthesis, there must be some basis for controlling which carbonyl component serves as the electrophile and which acts as the enolate precursor. One of the most general mixed aldol condensations involves the use of aromatic aldehydes with alkyl ketones or aldehydes. Aromatic aldehydes are incapable of enolization and cannot function as the nucleophilic component. Furthermore, dehydration is especially favorable because the resulting enone is conjugated with the aromatic ring. [Pg.60]

Control of Regiochemistry and Stereochemistry of Mixed Aldol Reactions of Aliphatic Aldehydes and Ketones... [Pg.62]

Mixed aldol reactions may be broadly classified as the reaction between two different aldehydes or ketones, or the reaction of an aldehyde with a ketone. Apart from the concomitant self-condensation, not less than two possible crossed products can be envisaged. Such reactions are therefore only prepara-tively useful either if appropriate structural conditions are present, or if certain experimental conditions are used to effect a directed aldol condensation. [Pg.800]

At first sight formaldehyde (methanal, CH2=0) seems the ideal electrophilic partner in a mixed aldol reaction. It cannot enolize, (Usually we are concerned with oc hydrogen atoms in an aldehyde. Formaldehyde does not even have a carbon atoms.) And it is a super aldehyde. Aldehydes are more electrophilic than ketones because a hydrogen atom replaces one of the alkyl groups. Formaldehyde has two hydrogen atoms. [Pg.712]

This mixed aldol will succeed because one of the components, benzaldehyde, is a good acceptor of nucleophiles, yet has no cc-hydrogen atoms. Although it is possible for acetone to undergo self-condensation, the mixed aldol reaction is much more favorable. [Pg.613]


See other pages where Mixed aldol reactions is mentioned: [Pg.885]    [Pg.885]    [Pg.905]    [Pg.1281]    [Pg.1287]    [Pg.1298]    [Pg.1331]    [Pg.361]    [Pg.361]    [Pg.365]    [Pg.525]    [Pg.607]    [Pg.684]    [Pg.944]    [Pg.944]    [Pg.964]    [Pg.885]   
See also in sourсe #XX -- [ Pg.885 ]

See also in sourсe #XX -- [ Pg.1343 ]

See also in sourсe #XX -- [ Pg.885 ]

See also in sourсe #XX -- [ Pg.912 ]




SEARCH



Acetoacetic ester, alkylation mixed aldol reactions

Aldol condensation mixed’ reaction

Aldol reaction mixed/crossed

Crossed or mixed aldol reactions

Ethyl acetoacetate, mixed aldol reactions

Ketones mixed aldol reaction

Metal enolates mixed aldol reaction

Mixed and Directed Aldol Reactions

© 2024 chempedia.info