Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction benzyl alcohol with acetic acid

Metal triflate Lewis acids can also be dispersed in ionic liquids for catalytic applications. Acetylation of alcohols with acetic anhydride and acetic acid has been reported with Cu(OTf)2, Yb(OTf)3, Sc(OTf)3, In(OTf)3, HfClq. (THF)2, and InCl3 in ionic liquids that consist of [BMIM] and the anions BF4, PF, or SbF 166). With lmol% acid, all the catalysts in [BMIMJPF showed >99% acetylation products in acetyl anhydride acetylation of benzyl alcohol. Sc(OTf)3 showed the best yield with recycling, with a 25% drop in yield after two cycles. A relatively long reaction period was needed to obtain a high yield (95-98%) for the acetylation of benzyl alcohol with acetic acid, indicating that the activities of the catalysts were... [Pg.193]

Imidazolium PILs and AILs with BF4, Pp6, and PTSA (para-toluenesulfonate) anions were trialed in the esterification of benzyl alcohol with acetic acid with all giving good-to-excellent conversions and selectivities in fairly short times. The AIL [BMIm][PTSA] led to 100% conversion and 100% selectivity, indicating that the esterification reaction does not require a proton for the catalytic process. However, a mechanism has been proposed by Arfan et al. that requires a proton for the esterification process. [Pg.22]

To prove our hypothesis on the organocatalytic effects of anions, we chose a series of relatively basic anions, combined with l-butyl-3-methylimidazolium cations. Surprising results were obtained in the esterification of benzyl alcohol and acetic acid, which not only showed that the yields with any of the ionic liquids investigated are much lower than in the absence of ionic liquid (27% after 5 h 75-80% after 100 h in equilibrium), but also that in none of the cases equilibrium was reached after 5 h at 100 °C (ROH R COOH ionic liquid = 1 1.5 1). However, slight effects of the nature of the anion were observed, giving decreasing reaction... [Pg.72]

Phenylacetamide has been obtained by a wide variety of reactions from benzyl cyanide with water at 250-260° 6 from benzyl cyanide with water and cadmium oxide at 240° 6 from benzyl cyanide with sulfuric acid 7 8 by saturation of an acetone solution of benzyl cyanide with potassium hydrosulfide 9 from benzyl cyanide with sodium peroxide 10 by electrolytic reduction of benzyl cyanide in sodium hydroxide 11 from ethyl phenyl-acetate with alcoholic 12 or aqueous 13 ammonia from phenyl-acetic acid with ammonium acetate 14 or urea 15 from diazoacetophenone with ammoniacal silver solution 16 from phenyl-acetic acid imino ether hydrochloride and water 17 from acetophenone with ammonium poly sulfide at 215° 18 from benzoic acid 19 and by heating the ammonium salt of phenyl-acetic acid.20... [Pg.94]

In an attempt to couple halobenzaldehydes with amines, A1203 was pre-absorbed with the substituted benzaldehydes and imidazole or piperidine as a base and irradiated with microwaves. However, the corresponding benzylic alcohols and benzoic acids were unexpectedly obtained by the Cannizzaro route (Scheme 4.20). The products of Cannizzaro reactions were also obtained as the main products, when microwave-assisted condensation reactions of benzaldehydes with vinyl acetate using barium hydroxide as the catalyst were attempted40. [Pg.85]

Benzylation with benzyl trichloroacetimidate and a catalytic amount of triflic acid (TfOH) is a mild and efficient procedure (Scheme 2.1c).5 The acid protonates the nitrogen of the imidate moiety converting it into a very good leaving group. Nucleophilic attack by an alcohol introduces a benzyl ether. The procedure is often compatible with base- and acid-sensitive functionalities with esters, (7-isopropylidene and (7-benzylidene acetals. Benzyl trichloroacetimidate is commercially available but can easily be prepared by reaction of benzyl alcohol with trichloroacetonitrile in the presence of a mild base. [Pg.28]

A number of Lewis acidic metal salts have been tested in the acetylation of alcohols with acetic anhydride and acetic acid.[67] Of these, copper(II) triflate showed by far the highest activity, but the recycling potential was low. The recyclability was found to be much better with either Sc(OTf)3 or Yb(OTf)3. The reaction between benzyl alcohol and acetic anhydride proceeded to completion within one hour, whereas with acetic acid two days were required under identical reaction conditions. Of the ionic liquids tested, the best activities were obtained in [C4Ciim][PF6]. [Pg.201]

Benzylic carbocations are also stabilized by complexation to chromium and a number of interesting reactions have been reported. Again, reaction of the carbocations with nucleophiles occurs from the exo face of the complex, relative to the metal. Carbocations are readily formed by treatment of benzylic alcohols with a strong acid, such as sulfuric acid, tetrafluoroboric acid, or borontrifluoride etherate. The cation can be trapped with water, alcohols, nitriles, and mono-or disubstituted amines to form alcohols, ethers, amides, and di- or trisubstituted amines respectively. Scheme 96 illustrates the formation of a benzylic carbocation followed by intramolecular trapping, resulting in a net inversion of stereochemistry. Benzylic acetates react with trimethyl aluminium introducing a methyl group from the opposite face of the metal. [Pg.3237]

Methyl, ethyl, benzyl, benzhydryl, p-nitrobenzyl, p-methoxy-benzyl, 4-picolyl, j3j -trichloroethyl, j3-methylthioethyl, /J-p-toluenesulphonylethyl, and -p-nitrophenylthioethyl esters may be prepared directly from the acid and alcohol. TTie most usual method [4, 5] consists of heating the acid and an excess of the alcohol with an acid catalyst (e.g., Fischer-Speier, hydrochloric or sulphuric acid). The extent of reaction is improved if the water formed is removed by azeotropic distillation with an inert solvent (benzene, carbon tetrachloride, or chloroform). Considerable variation is possible in the natvire of the acid catalyst thus phosphoric acid [6], aryl sulphonic acids [7, 8, 9], alkyl sulphates [10], and acidic ion-exchange resins [11] may be employed. Removal of the water by azeotropic distillation during the formation of methyl esters is difficult and Brown and Lovette [12] introduced the novel reagent acetone dimethyl acetal (7) for the direct formation of methyl esters. In the presence of a trace of methanol and an acid catalyst the reagent acts as a scavenger of water formed by esterification and liberates further methanol for reaction. [Pg.185]

A discussion of the chemistry of iodoxybenzenes describes their use in the oxidation of benzylic alcohols, a reaction strongly catalysed by acetic acid. The reagent also cleaves vicinal diols. a-Hydroxy-acids are cleaved to carbon dioxide and the carbonyl compound with AT-iodosuccinimide in benzene, chlorobenzene, or tetrahydrofuran. The reaction, which liberates iodine, is markedly accelerated by irradiation. [Pg.49]

Mix 31 g. (29-5 ml.) of benzyl alcohol (Section IV, 123 and Section IV,200) and 45 g. (43 ml.) of glacial acetic acid in a 500 ml. round-bottomed flask introduce 1 ml. of concentrated sulphuric acid and a few fragments of porous pot. Attach a reflux condenser to the flask and boil the mixture gently for 9 hours. Pour the reaction mixture into about 200 ml. of water contained in a separatory funnel, add 10 ml. of carbon tetrachloride (to eliminate emulsion formation owing to the slight difference in density of the ester and water, compare Methyl Benzoate, Section IV,176) and shake. Separate the lower layer (solution of benzyl acetate in carbon tetrachloride) and discard the upper aqueous layer. Return the lower layer to the funnel, and wash it successively with water, concentrated sodium bicarbonate solution (until effervescence ceases) and water. Dry over 5 g. of anhydrous magnesium sulphate, and distil under normal pressure (Fig. II, 13, 2) with the aid of an air bath (Fig. II, 5, 3). Collect the benzyl acetate a (colourless liquid) at 213-215°. The yield is 16 g. [Pg.783]

Reactions. Saligenin [90-01-7] undergoes the typical reactions of phenols and benzyl alcohol. When heated above 100°C, it transforms into a pale yellow resinous material. Amorphous condensation products are obtained when saligenin reacts with acetic anhydride, phosphoms pentachloride, or mineral acids. Upon boiling with dilute acids, saligenin is converted into a resinous body, saliretin, a condensed form of saligenin. Condensation reactions of saligenin with itself in the absence of any catalysts and in the presence of bases have also been studied. [Pg.293]

It is important to note that the one-step conversion of 27 to 28 (Scheme 4) not only facilitates purification, but also allows differentiation of the two carbonyl groups. After hydrogenolysis of the iV-benzyl group (see 28—>29), solvolysis of the -lactone-ring in 29 with benzyl alcohol and a catalytic amount of acetic acid at 70 °C provides a 3 1 equilibrium mixture of acyclic ester 30 and starting lactone 29. Compound 30 can be obtained in pure form simply by washing the solid mixture with isopropanol the material in the filtrate can be resubjected to the solvolysis reaction. [Pg.258]

Alkyl esters are efficiently dealkylated to trimethylsilyl esters with high concentrations of iodotrimethylsilane either in chloroform or sulfolane solutions at 25-80° or without solvent at 100-110°.Hydrolysis of the trimethylsilyl esters serves to release the carboxylic acid. Amines may be recovered from O-methyl, O-ethyl, and O-benzyl carbamates after reaction with iodotrimethylsilane in chloroform or sulfolane at 50—60° and subsequent methanolysis. The conversion of dimethyl, diethyl, and ethylene acetals and ketals to the parent aldehydes and ketones under aprotic conditions has been accomplished with this reagent. The reactions of alcohols (or the corresponding trimethylsilyl ethers) and aldehydes with iodotrimethylsilane give alkyl iodides and a-iodosilyl ethers,respectively. lodomethyl methyl ether is obtained from cleavage of dimethoxymethane with iodotrimethylsilane. [Pg.21]

The availability of Nafion on silica has not only lowered the cost of the resin but also has made it versatile (Sun et al., 1997 Harmer et al., 1998). A number of industrially important reactions have been attempted, with considerable success, with these catalysts. Consider the Fries rearrangement of phenyl acetate to p-acetyl phenol (/t-hydroxy acetophenone). This has been accomplished by Hoelderich and co-workers (Heidekum, 1998). In the ca.se of alkylation of benzene with benzyl alcohol, Amberlyst-15 and p-toluene sulphonic acid are ineffective and Nafion on silica works well at 80 °C. [Pg.129]

Benzyl Alcohols. Benzyl alcohols of nearly all kinds undergo reduction when treated with acid in the presence of organosilicon hydrides. The most obvious exception to this is the behavior of benzyl alcohol itself. It resists reduction by the action of trifluoroacetic acid and triethylsilane, even after extended reaction times.26 Reducing systems consisting of triethylsilane and sulfuric acid/acetic acid or p-toluenesullonic acid/acetic acid mixtures also fail to reduce benzyl alcohol to toluene.134 As previously mentioned, substitution of boron trifluoride for trifluoroacetic acid results in the formation of modest yields of toluene, but only when a very large excess of the silane is used in order to capture the benzyl cation intermediate and suppress Friedel-Crafts oligomerization processes.129,143... [Pg.18]


See other pages where Reaction benzyl alcohol with acetic acid is mentioned: [Pg.104]    [Pg.195]    [Pg.77]    [Pg.414]    [Pg.163]    [Pg.245]    [Pg.360]    [Pg.3238]    [Pg.92]    [Pg.168]    [Pg.228]    [Pg.299]    [Pg.19]    [Pg.1062]    [Pg.1062]    [Pg.226]    [Pg.148]    [Pg.149]    [Pg.63]    [Pg.228]    [Pg.55]    [Pg.235]    [Pg.8]    [Pg.144]    [Pg.184]    [Pg.107]    [Pg.221]    [Pg.117]    [Pg.216]    [Pg.86]    [Pg.354]    [Pg.165]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



2- acetic acid, reaction with

Acetals alcohols

Acetals reactions with

Acetates reactions with

Acetic acid reaction

Acetic acid with alcohols

Alcohol benzylation

Alcohols acetates

Alcohols benzyl alcohol

Benzyl Acetals

Benzyl acetate

Benzyl acetate, reactions

Benzyl alcohol

Benzyl alcohol, reaction with

Benzylation benzyl alcohol

Benzylation reactions

Benzylic acetals

Benzylic alcohols

Reaction with alcohols

© 2024 chempedia.info