Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Phenyl acetate, from

In 20% dioxan-water (Milsden and Cohen, 1972). The reference reaction is the formation of phenyl acetate from phenol and acetic acid at 25° (rate constant estimated at 1.5 x 10 10 dm3 mol-1 s 1). These authors very high rate constants for the lactonization of compounds B.2.23-25 (data in parentheses) which lead to much quoted EM s in the region of 10 M, appear to be too high by several orders of magnitude (Caswell and Schmir, 1980)... [Pg.245]

Cacciapaglia. R.. Mandolini, 1... and Van Axel Castelli, V. (1997) Effect of cation complexing agents on the Ba(II)-assisted basic ethanolysis of phenyl acetate from cation deactivation to cation activation. J. Org. Chem.. 62. 3089. [Pg.140]

Photochemical cleavage of a bond ot to a carbonyl group is not unique to aldehydes and ketones. For example, phenyl acetate, from its S1 state, forms the products in Equation 13.64.88... [Pg.719]

Fig. 1. A generalized scheme showing the kinds of secondary products that arise from the aromatic amino acids in higher plants. Several similarities are found in fungi and bacteria some fungi produce alkaloids ftom tryptophan and lignin-like materials from phenylalanine. Plant pathogenic fungi produce cinnamate and para and meta hydroxy phenyl-acetate from phenylalanine. Certain bacteria produce antibiotics and fluorescent pigments from metabolites in the shikimate pathway. Microorganisms are not known to produce coumarin, substituted coumarins, flavonoids and isoflavonoids. Fig. 1. A generalized scheme showing the kinds of secondary products that arise from the aromatic amino acids in higher plants. Several similarities are found in fungi and bacteria some fungi produce alkaloids ftom tryptophan and lignin-like materials from phenylalanine. Plant pathogenic fungi produce cinnamate and para and meta hydroxy phenyl-acetate from phenylalanine. Certain bacteria produce antibiotics and fluorescent pigments from metabolites in the shikimate pathway. Microorganisms are not known to produce coumarin, substituted coumarins, flavonoids and isoflavonoids.
Phenyl acetate [122-79-2] M 136.2, b 78°/10mm, d 1.079, n 1.5039. Freed from phenol and acetic acid by washing (either directly or as a soln in pentane) with aqueous 5% Na2C03, then with saturated aqueous CaCl2, drying with CaS04 or Na2S04, and fractional distn at reduced pressure. [Pg.327]

This acid, CgHj. CH COOH, is a sweet-smelling substance, especially recommended for sweetening soap perfumes. It occurs in neroli oil, and has a sweet honey-like odour. It is formed by converting toluene into benzyl chloride which is converted into benzyl cyanide, which is digested with dilute sulphuric acid, and so converted into phenyl-acetic acid. It is a crystalline body, melting at 76° to 76 5° and Iwiling at 266°. It has been isolated from oil of neroli. [Pg.297]

To a well stirred suspension of 9 g of sodium phenyl acetate and 2.4 g of magnesium turnings in 25 cc of anhydrous ether, a solution of 9.4 cc of isopropyl bromide in 50 cc of anhydrous ether are added. The mixture is refluxed for one hour (during which time propane is evolved) and then 5 cc of cyclopentanone in 25 cc of anhydrous ether are added dropwise. The mixture is then refluxed for one hour and poured over ice water containing some hydrochloric acid. The ether solution is separated and extracted with 200 cc of 5% sodium hydroxide. The alkaline solution on acidification gives the free acid which is filtered off, dried in a desiccator and recrystallized from a mixture of ethylene dichloride and petroleum ether. [Pg.413]

Of this product, 4.5 g in 30 cc of dry isopropyl alcohol are refluxed for 16 hours with 2.5 g of (3-chloroethyl dimethyl amine. The solution is cooled and filtered clear from the solid by-product. The solvent is removed under reduced pressure on the steam bath and the residue is washed with anhydrous ether. It is dissolved in ethyl acetate from which it crystallizes. It is the hydrochloride of (3-(dimethylamino)ethyl ester of 2-phenyl-2-( 1-hy-droxycyclopentyl) ethanoic acid, melting at 134° to 136°C. [Pg.413]

To a solution of 4 g of sodium in 200 ml of n-propanol is added 39 g of homovanillic acid-n-propyl ester (boiling point 160°C to 162°C/4 mm Hg) and the mixture is concentrated by evaporation under vacuum. After dissolving the residue in 200 ml of dimethylformamide and the addition of 0.5 gof sodium iodide, 26.2 g of chloracetic acid-N,N-diethylamide are added drop-wise with stirring at an internal temperature of 130°C, and the mixture is further heated at 130°C for three hours. From the cooled reaction mixture the precipitated salts are removed by filtering off with suction. After driving off the dimethylformamide under vacuum, the product is fractionated under vacuum, and 44.3 g of 3-methoxy-4-N,N-diethylcarbamido-methoxy phenyl acetic acid-n-propyl ester are obtained as a yellowish oil of boiling point 210°C to 212°C/0,7 mm Hg,... [Pg.1310]

Preparation of 3 5-diiodo-4-(4 -hydroxyphenoxy)phenylacetic acid (diac) A solution of ethyl 3 5-diiodo-4-(4 -methoxyphenoxy)phenyl acetate (9.5 g) in acetic acid (60 ml) was heated under reflux with hydriodic acid (SG 1.7, 50 ml) and red phosphorus (0.5 g) for 1 hour. The hot solution was filtered and the filtrate concentrated at 50°C and 15 mm of mercury to above 20 ml. The residue was treated with water (70 ml) containing a little sodium thiosulfate to decolorize the product. The solid was collected by filtration and purified by the method of Harington and Pitt-Rivers [Biochem. J. (1952), Vol. 50, page 438]. Yield 8,36 g (95%). After crystallization from 70% (v/v) acetic acid it melted at 219°C. [Pg.1498]

In these equations, Dmax is the larger of the summed values of STERIMOL parameters, Bj, for the opposite pair 68). It expresses the maximum total width of substituents. The coefficients of the ct° terms in Eqs. 37 to 39 were virtually equal to that in Eq. 40. This means that the a° terms essentially represent the hydrolytic reactivity of an ester itself and are virtually independent of cyclodextrin catalysis. The catalytic effect of cyclodextrin is only involved in the Dmax term. Interestingly, the coefficient of Draax was negative in Eq. 37 and positive in Eq. 38. This fact indicates that bulky substituents at the meta position are favorable, while those at the para position unfavorable, for the rate acceleration in the (S-cyclodextrin catalysis. Similar results have been obtained for a-cyclodextrin catalysis, but not for (S-cyclodextrin catalysis, by Silipo and Hansch described above. Equation 39 suggests the existence of an optimum diameter for the proper fit of m-substituents in the cavity of a-cyclodextrin. The optimum Dmax value was estimated from Eq. 39 as 4.4 A, which is approximately equivalent to the diameter of the a-cyclodextrin cavity. The situation is shown in Fig. 8. A similar parabolic relationship would be obtained for (5-cyclodextrin catalysis, too, if the correlation analysis involved phenyl acetates with such bulky substituents that they cannot be included within the (5-cyclodextrin cavity. [Pg.85]

The chiral acetate reagent is readily prepared from methyl mandelate [methyl (A)-hydroxy-phenyl acetate] which is first converted by treatment with phcnylmagnesium bromide into the triphenylglycol783, c (see Section 1.3.4.2.2.2.) and subsequently transformed into the acetate by reaction with acetyl chloride in the presence of pyridine. Thereby, the secondary hydroxyl group of the glycol is esterified exclusively. Both enantiomers of the reagent are readily accessible since both (R)- and (5)-hydroxyphenylacelic acid (mandelic acids) arc industrial products. [Pg.491]

The phenol ArOH is always a side product, resulting from some ArO that leaks from the solvent cage and abstracts a hydrogen atom from a neighboring molecule. When the reaction was performed on phenyl acetate in the gas phase, where there are no solvent molecules to form a cage (but in the presence of isobutane as a source of abstractable hydrogens), phenol was the chief product and virtually no o- or p-hydroxyacetophenone was found." Other evidence" for the mechanism is that... [Pg.726]

The enantiomeric excess (ee) of the hydrogenated products was determined either by polarimetry, GLC equipped with a chiral column or H-NMR with a chiral shift reagent. Methyl lactate and methyl 3-hydroxybutanoate, obtained from 1 and 2, respectively, were analized polarimetry using a Perkin-Elmer 243B instrument. The reference values of [a]o(neat) were +8.4° for (R)-methyl pyruvate and -22.95° for methyl 3-hydroxybutcinoate. Before GLC analysis, i-butyl 5-hydroxyhexanoate, methyl 5-hydroxyhexanoate, and n-butyl 5-hydroxyhexanoate, obtained from 1, 5, and 6, respectively, were converted to the pentanoyl esters, methyl 3-hydroxybutanoate was converted to the acetyl ester, and methyl 4-methyl-3-hydroxybutanoate obtained from 2 was converted the ester of (+)-a-methyl-a-(trifluoromethyl)phenyl acetic acid (MTPA). [Pg.239]

Figure 1. Hydrolysis pH-rate profiles of phenyl acetate (lower) and a substituted 2-phenyl-l,3-dioxane (HND). Phenyl acetate profile constructed from data of Mabey and Mill (32), HND profile from data of Bender and Silver (33). Phenyl acetate reacts via specific-acid catalyzed, neutral, and base-catalyzed transformation pathways. The pseudo-first-order rate constant is given by Kobs = K(h+) [H+] + Kn + K(qh-) [0H—]. HND hydrolyzes only via an acid-catalyzed pathway the phenolate anion is some 867 times more reactive than its conjugate acid. Figure 1. Hydrolysis pH-rate profiles of phenyl acetate (lower) and a substituted 2-phenyl-l,3-dioxane (HND). Phenyl acetate profile constructed from data of Mabey and Mill (32), HND profile from data of Bender and Silver (33). Phenyl acetate reacts via specific-acid catalyzed, neutral, and base-catalyzed transformation pathways. The pseudo-first-order rate constant is given by Kobs = K(h+) [H+] + Kn + K(qh-) [0H—]. HND hydrolyzes only via an acid-catalyzed pathway the phenolate anion is some 867 times more reactive than its conjugate acid.
Log-log plot of ionization constants of benzoic and phenyl-acetic acids in water at 25°. (From Physical Organic Chemistry by J. S. Hine. Copyright 1962. Used with permission of McGraw-Hill Book Company.)... [Pg.237]

Values of /c2 and Kd for the reactions of the cycloamyloses with a variety of phenyl acetates are presented in Table IV. The rate constants are normalized in the fourth column of this table to show the maximum accelerations imposed by the cycloamyloses. These accelerations vary from 10% for p-f-butylphenyl acetate to 260-fold for m-f-butylphenyl acetate, again showing the clear specificity of the cycloamyloses for meta-substituted esters. Moreover, these data reveal that the rate accelerations and consequent specificity are unrelated to the strength of binding. For example, although p-nitrophenyl acetate forms a more stable complex with cyclohexa-amylose than does m-nitrophenyl acetate, the maximal rate acceleration, h/kan, is much greater for the meta isomer. [Pg.226]

Values of /c2, the maximal rate constant for disappearance of penicillin at pH 10.24 and 31.5°, and Ka, the cycloheptaamylose-penicillin dissociation constant are presented in Table VII. Two features of these data are noteworthy. In the first place, there is no correlation between the magnitude of the cycloheptaamylose induced rate accelerations and the strength of binding specificity is again manifested in a rate process rather than in the stability of the inclusion complex. Second, the selectivity of cycloheptaamylose toward the various penicillins is somewhat less than the selectivity of the cycloamyloses toward phenyl esters—rate accelerations differ by no more than fivefold throughout the series. As noted by Tutt and Schwartz (1971), selectivity can be correlated with the distance of the reactive center from the nonpolar side chain. Whereas the carbonyl carbon of phenyl acetates is only two atoms removed from the phenyl ring, the reactive center... [Pg.231]

An additional example is the observed moderate acceleration in the cleavage of particular phenyl esters in the presence of a cyclodextrin. In such cases, the bound ester is attacked by an hydroxyl group on the cyclodextrin to yield a new ester. There was found to be a significant enhancement of phenol release from meta-substituted phenyl acetate on interaction with cyclodextrin (relative to other esters which do not fit the cavity so well) (Van Etten, Clowes, Sebastian Bender, 1967). During the reaction, the acyl moiety transfers to an hydroxyl group on the... [Pg.167]


See other pages where Phenyl acetate, from is mentioned: [Pg.240]    [Pg.240]    [Pg.669]    [Pg.676]    [Pg.677]    [Pg.345]    [Pg.940]    [Pg.4]    [Pg.294]    [Pg.354]    [Pg.780]    [Pg.303]    [Pg.80]    [Pg.86]    [Pg.475]    [Pg.99]    [Pg.279]    [Pg.434]    [Pg.669]    [Pg.676]    [Pg.677]    [Pg.18]    [Pg.375]    [Pg.228]    [Pg.229]    [Pg.308]    [Pg.194]    [Pg.1209]    [Pg.680]    [Pg.444]   


SEARCH



Acetal from

Acetic phenyl

Phenyl acetate

© 2024 chempedia.info