Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rays and Electrons

How do we deduce from the figure that the cathode rays travel from cathode to anode  [Pg.44]

Electrons move from the negative cathode to the positive anode. The tube contains a fluorescent screen that shows the path of the cathode rays. The rays are deflected by a magnet. X [Pg.44]

Thomson observed that the cathode rays produced in the cathode-ray tube behaved identically, regardless of the particular metal used as cathode. What is the significance of this observation  [Pg.44]

Would the masses of the oil drops be changed significantly by any electrons that accumulate on them  [Pg.45]

This result agrees well with the currently accepted value for the electron mass, 9.10938 X 10 g. This mass is about 2000 times smaller than that of hydrogen, the lightest atom. [Pg.45]


As in the case of ions we can assign values to covalent bond lengths and covalent bond radii. Interatomic distances can be measured by, for example. X-ray and electron diffraction methods. By halving the interatomic distances obtained for diatomic elements, covalent bond radii can be obtained. Other covalent bond radii can be determined by measurements of bond lengths in other covalently bonded compounds. By this method, tables of multiple as well as single covalent bond radii can be determined. A number of single covalent bond radii in nm are at the top of the next page. [Pg.48]

The 3D MoRSE code is closely related to the molecular transform. The molecular transform is a generalized scattering function. It can be used to predict the intensity of the scattered radiation i for a known molecular structure in X-ray and electron diffraction experiments. The general molecular transform is given by Eq. (22), where i(s) is the intensity of the scattered radiation caused by a collection of N atoms located at points r. ... [Pg.415]

The short-range order in a material is important in determining optoelectronic properties. For instance, x-ray and electron diffraction experiments performed on amorphous siHcon (i -Si) and germanium (a-Ge) have revealed that the nearest neighbor environments are approximately the same as those found in their crystalline counterparts (6) photoemission experiments performed on i -Si show that the DOS in valence and conduction bands are virtually identical to the corresponding crystal with the exception that the singularities (associated with periodicity) present in the latter are smeared out in the former. [Pg.357]

In thin sections natural graphite is translucent, strongly pleochroic, and uniaxial. It has a negative sign of birefringence and two extinctions per revolution under crossed Nicol prisms. The atomic number of carbon accounts for its low absorption coefficient for x-rays and electrons. [Pg.572]

As with other diffraction techniques (X-ray and electron), neutron diffraction is a nondestructive technique that can be used to determine the positions of atoms in crystalline materials. Other uses are phase identification and quantitation, residual stress measurements, and average particle-size estimations for crystalline materials. Since neutrons possess a magnetic moment, neutron diffraction is sensitive to the ordering of magnetically active atoms. It differs from many site-specific analyses, such as nuclear magnetic resonance, vibrational, and X-ray absorption spectroscopies, in that neutron diffraction provides detailed structural information averaged over thousands of A. It will be seen that the major differences between neutron diffraction and other diffiaction techniques, namely the extraordinarily... [Pg.648]

Like X-ray and electron diffraction, neutron diffraction is a technique used primarily to characterize crystalline materials (defined here as materials possessing long-range order). The basic equation describing a diffraction experiment is the Bra equation ... [Pg.649]

X-ray and electron beam characteristics of a typical S-band electron accelerator [401... [Pg.1031]

The differences between x-ray and electron excitation must obviously stem from differences in the interaction of x-rays (1.11) and of electrons (1.4) with matter. Electrons are retarded rather quickly when they strike a sample, and they lose much of their energy in classical collision processes (4.1). Because electrons transfer their energy so rapidly, the critical thickness (Equation 6-8) for electron excitation is very much less than we saw it to be for x-ray excitation a.calculation based on experiments on a variety of materials53 gives 1CT3 cm (105 A) as a good value for the depth to which 50-kv electrons penetrate aluminum, and bears out the previous statement. Because the energy of every electron decreases as it penetrates, the x-ray excited by any electron will be of... [Pg.176]

X-Ray and electron diffraction measurements have been most usually used to characterize the phases present in any reactant mixture, and provide a means of identification of solid reactants, intermediates and products. In addition to such qualitative analyses, the method can also be used quantitatively, with suitable systems, to determine the amounts of particular solids present [111], changes in lattice parameters during reaction, topotactical relationships between reactants and products, the presence of finely divided or strained material, crystallographic transformations, etc. [Pg.27]

If two different three-dimensional arrangements in space of the atoms in a molecule are interconvertible merely by free rotation about bonds, they are called conformationsIf they are not interconvertible, they are called configurations Configurations represent isomers that can be separated, as previously discussed in this chapter. Conformations represent conformers, which are rapidly interconvertible and are thus nonseparable. The terms conformational isomer and rotamer are sometimes used instead of conformer . A number of methods have been used to determine conformations. These include X-ray and electron diffraction, IR, Raman, UV, NMR, and microwave spectra, photoelectron spectroscopy, supersonic molecular jet spectroscopy, and optical rotatory dispersion (ORD) and CD measurements. Some of these methods are useful only for solids. It must be kept in mind that the conformation of a molecule in the solid state is not necessarily the same as in solution. Conformations can be calculated by a method called molecular mechanics (p. 178). [Pg.167]

Radiation processing of polymers was introduced after World War II with the development of the nuclear reactor. In the current years, various radiation sources, e.g.. X-rays (soft and hard), gamma (7) and ultraviolet (UV) rays and electron beam (EB) are being widely used. [Pg.851]

Structural data from X-ray- and electron-diffraction studies, mass spectra, and MO calculations were analyzed for R3SiCo(CO)4 (R = H, F, Cl) and Me3SiMn(CO)5 it was believed that there is partial double-bond character between Si and Co and that there may be intramolecular interaction between the axial silicon atom and the equatorial carbonyl groups 30, 212). [Pg.289]

C. H. Chao, S. H. Ein, W. K. Liu, and P. Rentzepis, Theory of ultrafast time-resolved X-ray and electron diffraction. In J. R. Helliwell and P. M. Rentzepis (eds.), Time-Resolved Diffraction, Volume 2 of Oxford Series on Synchrotron Radiation, Chap. 11, pp. 260-283. Oxford University Press, Oxford, 1997. [Pg.283]

Careful X-ray studies can indicate the validity of such a number, and, as well, reveal whether the catalyst particles cluster. In this case, the X-ray size will be much smaller than that indicated by chemisorption. This ctui also be done by comparing X-ray and electron microscopy results.(6)... [Pg.387]

Fig. 3.19 Schematic illustration of the measurement geometry for Mossbauer spectrometers. In transmission geometry, the absorber (sample) is between the nuclear source of 14.4 keV y-rays (normally Co/Rh) and the detector. The peaks are negative features and the absorber should be thin with respect to absorption of the y-rays to minimize nonlinear effects. In emission (backscatter) Mossbauer spectroscopy, the radiation source and detector are on the same side of the sample. The peaks are positive features, corresponding to recoilless emission of 14.4 keV y-rays and conversion X-rays and electrons. For both measurement geometries Mossbauer spectra are counts per channel as a function of the Doppler velocity (normally in units of mm s relative to the mid-point of the spectrum of a-Fe in the case of Fe Mossbauer spectroscopy). MIMOS II operates in backscattering geometry circle), but the internal reference channel works in transmission mode... Fig. 3.19 Schematic illustration of the measurement geometry for Mossbauer spectrometers. In transmission geometry, the absorber (sample) is between the nuclear source of 14.4 keV y-rays (normally Co/Rh) and the detector. The peaks are negative features and the absorber should be thin with respect to absorption of the y-rays to minimize nonlinear effects. In emission (backscatter) Mossbauer spectroscopy, the radiation source and detector are on the same side of the sample. The peaks are positive features, corresponding to recoilless emission of 14.4 keV y-rays and conversion X-rays and electrons. For both measurement geometries Mossbauer spectra are counts per channel as a function of the Doppler velocity (normally in units of mm s relative to the mid-point of the spectrum of a-Fe in the case of Fe Mossbauer spectroscopy). MIMOS II operates in backscattering geometry circle), but the internal reference channel works in transmission mode...
D. J. Dyson, X-Ray and Electron Diffraction Studies in Materials Science, Maney Publishing, Leeds (2003). [Pg.678]

Carvalho, C A M., Hashizume, H., Stevenson, A.W. and Robinson, I K. (1996) Electron-density maps for the Si( 111) 7x7 surface calculated with the maximum-entropy technique using X-ray and electron-diffraction data, Physica B, 221,469 186. [Pg.36]

One problem with methods that produce polycrystalline or nanocrystalline material is that it is not feasible to characterize electrically dopants in such materials by the traditional four-point-probe contacts needed for Hall measurements. Other characterization methods such as optical absorption, photoluminescence (PL), Raman, X-ray and electron diffraction, X-ray rocking-curve widths to assess crystalline quality, secondary ion mass spectrometry (SIMS), scanning or transmission electron microscopy (SEM and TEM), cathodolumi-nescence (CL), and wet-chemical etching provide valuable information, but do not directly yield carrier concentrations. [Pg.240]

Lamellar, single crystals of cellulose triacetate, precipitated from nitromethane with butyl alcohol, were studied by X-ray and electron diffraction. Only the crystals containing the mother liquor, or moistened with nitromethane, showed rich diffraction details. From stretched and annealed fibers, it was found that the unit cell is tetragonal, with a = fe = 21.15A (2.115 nm), and c = 41.36 A (4.136 nm). [Pg.397]

The assumption of membrane softness is supported by a theoretical argument of Nelson et al., who showed that a flexible membrane cannot have crystalline order in thermal equilibrium at nonzero temperature, because thermal fluctuations induce dislocations, which destroy this order on long length scales.188 189 The assumption is also supported by two types of experimental evidence for diacetylenic lipid tubules. First, Treanor and Pace found a distinct fluid character in NMR and electron spin resonance experiments on lipid tubules.190 Second, Brandow et al. found that tubule membranes can flow to seal up cuts from an atomic force microscope tip, suggesting that the membrane has no shear modulus on experimental time scales.191 However, conflicting evidence comes from X-ray and electron diffraction experiments on diacetylenic lipid tubules. These experiments found sharp diffraction peaks, which indicate crystalline order in tubule membranes, at least over the length scales probed by the diffraction techniques.123,192 193... [Pg.357]

The term exp(-2k2c ) in (6-9) accounts for the disorder of the solid. Static disorder arises if atoms of the same coordination shell have slightly different distances to the central atom. Amorphous solids, for instance, possess large static disorder. Dynamic disorder, on the other hand, is caused by lattice vibrations of the atoms, as explained in Appendix 1. Dynamic disorder becomes much less important at lower temperatures, and it is therefore an important advantage to measure spectra at cryogenic temperatures, especially if a sample consists of highly dispersed particles. The same argument holds in X-ray and electron diffraction, as well as in Mossbauer spectroscopy. [Pg.170]

Many vinyl monomers were reported to have been grafted onto fluoropolymers, such as (meth)acrylic acid and (meth)acrylates, acrylamide, acrylonitryl, styrene, 4-vinyl pyridine, N-vinyl pyrrolidone, and vinyl acetate. Many fluoropolymers have been used as supports, such as PTFE, copolymers of TFE with HFP, PFAVE, VDF and ethylene, PCTFE, PVDF, polyvinyl fluoride, copolymers ofVDF with HFP, vinyl fluoride and chlorotrifluoroethylene (CTFE). The source of irradiation has been primarily y-rays and electron beams. The grafting can be carried out under either direct irradiation or through the use of preliminary irradiated fluoropolymers. Ordinary radical inhibitors can be added to the reaction mixture to avoid homopolymerization of functional monomers. [Pg.94]

X-ray and electron diffraction studies which are used to measure bond distances and bond angles give valuable information about conformation too. [Pg.170]


See other pages where Rays and Electrons is mentioned: [Pg.117]    [Pg.508]    [Pg.423]    [Pg.1032]    [Pg.231]    [Pg.1297]    [Pg.189]    [Pg.1057]    [Pg.311]    [Pg.72]    [Pg.850]    [Pg.326]    [Pg.63]    [Pg.283]    [Pg.401]    [Pg.84]    [Pg.220]    [Pg.225]    [Pg.226]    [Pg.20]    [Pg.113]    [Pg.257]    [Pg.285]    [Pg.292]    [Pg.170]    [Pg.66]   


SEARCH



Auger electron and X-ray fluorescence spectroscopy

Cryo-electron microscopy and X-ray crystallography

Diffraction of electrons, neutrons and X-rays

Diffraction of x-rays and electrons

Diffraction with electrons, X-rays, and atoms

Electron and X-Ray Diffraction Studies

Electron and X-Ray Diffraction Studies of 1,2,3,5-Dithiadiazolyl Radicals

Electron and x-ray spectroscopy

Ray and Electron Diffraction

Ray and Electron Microscope Investigations

Results of X-ray and electron diffraction studies

Scanning Electron Micrograph and -Ray Diffraction

Scanning electron microscopy and energy dispersive analysis using X-rays

X-Ray Fluorescence and Auger-Electron Emission

X-ray Emission and (Photo)Electron Spectroscopies

X-ray and electron microscopic analyses

X-ray and the Electronic Density

X-ray microanalysis and analytical electron microscopy

© 2024 chempedia.info