Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative analysis fatty acids

Until recently, gas-liquid chromatography (GLC) was the most popular method for the identification and quantitation of fatty acids however, with the emergence of new derivatisation techniques and improvements in detector technology HPLC offers a viable alternative. The most frequently used HPLC mode for the analysis of fatty acids is reversed phase either with or without pre-column derivatisa-... [Pg.193]

Eatty acids from commercial fats and oils, such as peanut oil, are extracted with methanolic NaOH and made volatile by derivatizing with a solution of methanol/BE3. Separations are carried out using a capillary 5% phenylmethyl silicone column with MS detection. By searching the associated spectral library students are able to identify the fatty acids present in their sample. Quantitative analysis is by external standards. [Pg.611]

Instmmental methods of analysis provide information about the specific composition and purity of the amines. QuaUtative information about the identity of the product (functional groups present) and quantitative analysis (amount of various components such as nitrile, amide, acid, and deterruination of unsaturation) can be obtained by infrared analysis. Gas chromatography (gc), with a Hquid phase of either Apiezon grease or Carbowax, and high performance Hquid chromatography (hplc), using siHca columns and solvent systems such as isooctane, methyl tert-huty ether, tetrahydrofuran, and methanol, are used for quantitative analysis of fatty amine mixtures. Nuclear magnetic resonance spectroscopy (nmr), both proton ( H) and carbon-13 ( C), which can be used for quaHtative and quantitative analysis, is an important method used to analyze fatty amines (8,81). [Pg.223]

In situ quantitation The fluorimetric analysis was carried out in long-wavelength UV light (A c = 365 nm An > 560 nm). The detection limit for fatty acids was ca. 100 ng per chromatogram zone. [Pg.406]

Gravimetric and volumetric methods are practicable for the quantitative determination of the a-sulfo fatty acid esters. Using gravimetric methods the surfactant is precipitated with p-toluidine or barium chloride [105]. The volumetric determination method is two-phase titration. In this technique different titrants and indicators are used. For the analysis of a-sulfo fatty acid esters the quaternary ammonium surfactant hyamine 1622 (p,f-octylphenoxyethyldimethyl-ammonium chloride) is used as the titrant [106]. The indicator depends on the pH value of the titration solution. Titration with a phenol red indicator is carried out at a pH of 9, methylene blue is used in acid medium [106], and a mixed indicator of a cationic (dimidium bromide) and an anionic (disulfine blue VN150) dye can be used in an acid and basic medium [105]. [Pg.492]

Alkaline hydrolysis (saponification) has been used to remove contaminating lipids from fat-rich samples (e.g., pahn oil) and hydrolyze chlorophyll (e.g., green vegetables) and carotenoid esters (e.g., fruits). Xanthophylls, both free and with different degrees of esterification with a mixture of different fatty acids, are typically found in fruits, and saponification allows easier chromatographic separation, identification, and quantification. For this reason, most methods for quantitative carotenoid analysis include a saponification step. [Pg.452]

Quantitative estimates of microbial and community structure by means of analysis of the phospholipid fraction have been performed on. sediments, water (135), and dust (136) as well as. soil (137-141). The method is applicable to the study of mixed populations of varying degrees of complexity and is relatively straightforward to perform. A selection of studies involving the analysis of fatty acid profiles of environmental samples are outlined in Table 6. [Pg.388]

The application of 13C NMR for the rapid analysis of the oil composition of oil seeds is well known [16], 13C NMR has recently been applied to the quantitative analysis of the most abundant fatty acids in olive oil [17]. The values obtained by this method differed by only up to 5% compared with GLC analysis. The quantitative analysis was applied to the olefmic region of the high resolution 13C NMR spectrum of virgin olive oil to detect adulteration by other oils which differed significantly in their fatty acid composition. The application of the methodology for the detection of adulteration of olive oil by hazelnut oil is more challenging as both oils have similar chemical profiles and further experiments are in progress. [Pg.479]

It is of interest to examine the development of the analytical toolbox for rubber deformulation over the last two decades and the role of emerging technologies (Table 2.9). Bayer technology (1981) for the qualitative and quantitative analysis of rubbers and elastomers consisted of a multitechnique approach comprising extraction (Soxhlet, DIN 53 553), wet chemistry (colour reactions, photometry), electrochemistry (polarography, conductometry), various forms of chromatography (PC, GC, off-line PyGC, TLC), spectroscopy (UV, IR, off-line PylR), and microscopy (OM, SEM, TEM, fluorescence) [10]. Reported applications concerned the identification of plasticisers, fatty acids, stabilisers, antioxidants, vulcanisation accelerators, free/total/bound sulfur, minerals and CB. Monsanto (1983) used direct-probe MS for in situ quantitative analysis of additives and rubber and made use of 31P NMR [69]. [Pg.36]

Applications Conventional GC is a workhorse in the qualitative and quantitative analysis of polymer additives in complex mixtures and has found numerous applications. Both GC and auxiliary techniques are particularly useful for characterisation of (semi)volatile constituents and additives ranging from gases to hydrocarbon waxes (fatty acids and their... [Pg.195]

On-line SFE-pSFC-FTIR was used to identify extractable components (additives and monomers) from a variety of nylons [392]. SFE-SFC-FID with 100% C02 and methanol-modified scC02 were used to quantitate the amount of residual caprolactam in a PA6/PA6.6 copolymer. Similarly, the more permeable PS showed various additives (Irganox 1076, phosphite AO, stearic acid - ex Zn-stearate - and mineral oil as a melt flow controller) and low-MW linear and cyclic oligomers in relatively mild SCF extraction conditions [392]. Also, antioxidants in PE have been analysed by means of coupling of SFE-SFC with IR detection [121]. Yang [393] has described SFE-SFC-FTIR for the analysis of polar compounds deposited on polymeric matrices, whereas Ikushima et al. [394] monitored the extraction of higher fatty acid esters. Despite the expectations, SFE-SFC-FTIR hyphenation in on-line additive analysis of polymers has not found widespread industrial use. While applications of SFC-FTIR and SFC-MS to the analysis of additives in polymeric matrices are not abundant, these techniques find wide application in the analysis of food and natural product components [395]. [Pg.479]

The few examples of deliberate investigation of dynamic processes as reflected by compression/expansion hysteresis have involved monolayers of fatty acids (Munden and Swarbrick, 1973 Munden et al., 1969), lecithins (Bienkowski and Skolnick, 1974 Cook and Webb, 1966), polymer films (Townsend and Buck, 1988) and monolayers of fatty acids and their sodium sulfate salts on aqueous subphases of alkanolamines (Rosano et al., 1971). A few of these studies determined the amount of hysteresis as a function of the rate of compression and expansion. However, no quantitative analysis of the results was attempted. Historically, dynamic surface tension has been used to study the dynamic response of lung phosphatidylcholine surfactant monolayers to a sinusoidal compression/expansion rate in order to mimic the mechanical contraction and expansion of the lungs. [Pg.62]

HPLC has more or less supplanted GC as a method for quantifying drugs in pharmaceutical preparations. Many of the literature references to quantitative GC assays are thus old and the precision which is reported in these papers is difficult to evaluate based on the measurement of peak heights or manual integration. It is more difficult to achieve good precision in GC analysis than in HPLC analysis and the main sources of imprecision are the mode of sample introduction, which is best controlled by an autosampler, and the small volume of sample injected. However, it is possible to achieve levels of precision similar to those achieved using HPLC methods. For certain compounds that lack chromophores, which are required for detection in commonly used HPLC methods, quantitative GC may be the method of choice, for analysis of many amino acids, fatty acids, and sugars. There are a number... [Pg.224]

Lawi-Berger, C. and I. Kapetanidis. Chemotaxonomic study of cannabis (Cannabaceae). Part 2. Quantitative analysis of fatty acids in hemp seeds of Cannabis sativa L. Pharm Acta Helv 1983 58(3) 79-81. [Pg.99]

The most logical material for the analysis of PUFA and plasmalogens are the erythrocytes. Fatty acids can also be quantitated in plasma. The plasmalogens are also easily detectable in homogenates of cultured fibroblasts and may add to the definitive diagnosis of patients with a generalised or isolated peroxisomal dysfunction. [Pg.209]

Accurate determination of lipids in foods is required for nutritional labeling, certification, or for evaluation of standard of identity and uniformity, as well as examination of their effects on functional and nutritional properties of foods. Following lipid extraction and precise quantitative analysis, lipids so obtained may be used for analysis of other lipid characteristics and properties provided that nondestructive and mild extraction procedures are employed that retain the integrity of lipids. Thus, determination of lipid classes, fatty acid composition (unit du), and oxidative state of lipids (Chapter D2), amongst others, may be pursued following the extraction process. [Pg.425]

Extracted lipids in this procedure may be used for certain further analysis, such as determination of fatty acid profile f UN1TD1.2) and oxidative state f UNITS 1)2.t 1)2.2) of the oil however, for lipid classification, incomplete extraction of polar lipids into nonpolar solvents may not allow for accurate determination and quantitation. [Pg.428]

If the analysis of fatty acid methyl esters gives a large amount of information on the composition of fats, there remain some unsolved problems, related to the two major flaws of the approach. The transesterification of TGs derived from polyunsatured acids is not always quantitative. A more important and general problem is that the method does not provide any information regarding the actual composition of the TGs. [Pg.171]

Ha, J. K. and Lindsay, R. C. (1990). Method for the quantitative analysis of volatile free and total branched-chain fatty acids in cheese and milk fat. ]. Dairy Sci. 73,1988-1999. [Pg.205]


See other pages where Quantitative analysis fatty acids is mentioned: [Pg.159]    [Pg.186]    [Pg.320]    [Pg.112]    [Pg.194]    [Pg.198]    [Pg.441]    [Pg.452]    [Pg.305]    [Pg.159]    [Pg.311]    [Pg.35]    [Pg.38]    [Pg.230]    [Pg.139]    [Pg.311]    [Pg.345]    [Pg.145]    [Pg.977]    [Pg.301]    [Pg.211]    [Pg.412]    [Pg.308]    [Pg.308]    [Pg.433]    [Pg.453]    [Pg.500]    [Pg.510]    [Pg.763]    [Pg.338]    [Pg.830]   
See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Acid quantitation

Fatty acid analysis

© 2024 chempedia.info