Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Solution titration

Titration of thioglycolate esters is also realized by iodine in alcohoHc solution. Titration of thioglycolic acid (acid number) in thioglycolate esters is effected by potentiometric titration with potassium hydroxide. [Pg.4]

For the estimation of ephedrine in its salts or simple solutions, titration methods and a Kjeldahl estimation have been described by various authors. The formation of iodoform from ephedrine has been proposed as a method of estimation by Sanchez, and biological methods have been used by several authors. ... [Pg.636]

Calcium Chloride [25]. Calcium chloride estimation is based on calcium titration. To 20 ml of 1 1 mixture of toluene (xylene) isopropyl alcohol, add a 1-ml (or 0.1-ml, if calcium is high) sample of oil-base mud, while stirring. Dilute the mixture with 75 to 100 ml of distilled water. Add 2 ml of hardness buffer solution and 10 to 15 drops of hardness indicator solution. Titrate mixture with standard versenate solution until the color changes from wine-red to blue. If common standard versenate solution (1 ml = 20 g calcium ions) is used, then... [Pg.662]

Analyses, (a) Original zinc-ion solution. Dilute 2.00 mL (pipette) to 100 mL in a graduated flask. Pipette 10.0 mL of the diluted solution into a 250 mL conical flask, add ca 90 mL of water, 2 mL of the buffer solution, and sufficient of the solochrome black indicator mixture to impart a pronounced red colour to the solution. Titrate with standard 0.01 M EDTA to a pure blue colour (see Section 10.59). [Pg.211]

Strong acid and strong base. For 0.1 M or more concentrated solutions, any indicator may be used which has a range between the limits pH 4.5 and pH 9.5. With 0.01 M solutions, the pH range is somewhat smaller (5.5—8.5). If carbon dioxide is present, either the solution should be boiled while still acid and the solution titrated when cold, or an indicator with a range below pH 5 should be employed. [Pg.280]

Then V — 2(V— v) corresponds to the hydroxide, 2(V — v) to the carbonate, and V to the total alkali. To obtain satisfactory results by this method the solution titrated must be cold (as near 0 °C as is practicable), and loss of carbon dioxide must be prevented as far as possible by keeping the tip of the burette immersed in the liquid. [Pg.298]

The method may be applied to commercial boric acid, but as this material may contain ammonium salts it is necessary to add a slight excess of sodium carbonate solution and then to boil down to half-bulk to expel ammonia. Any precipitate which separates is filtered off and washed thoroughly, then the filtrate is neutralised to methyl red, and after boiling, mannitol is added, and the solution titrated with standard 0.1M sodium hydroxide solution ... [Pg.300]

Pipette 25 mL of the copper solution (0.01 M) into a conical flask, add 100 mL de-ionised water, 5 mL concentrated ammonia solution and 5 drops of the indicator solution. Titrate with standard EDTA solution (0.01 M) until the colour changes from purple to dark green. [Pg.326]

Pipette 25 mL nickel solution (0.01 M) into a conical flask and dilute to 100mL with de-ionised water. Add the solid indicator mixture (50mg) and 10 mL of the 1M ammonium chloride solution, and then add concentrated ammonia solution dropwise until the pH is about 7 as shown by the yellow colour of the solution. Titrate with standard (0.01 M) EDTA solution until the end point is approached, then render the solution strongly alkaline by the addition of 10 mL of concentrated ammonia solution, and continue the titration until the colour changes from yellow to violet. The pH of the final solution must be 10 at lower pH values an orange-yellow colour develops and more ammonia solution must be added until the colour is clear yellow. Nickel complexes rather slowly with EDTA, and consequently the EDTA solution must be added dropwise near the end point. [Pg.327]

To determine the calcium in the calcium-magnesium mixture, pipette 25 mL of the solution into a 250 mL conical flask, add 25 mL of the buffer solution and check that the resulting solution has a pH of 9.5-10.0. Add 2mL of the Zn-EGTA solution and 2-3 drops of the indicator solution. Titrate slowly with the standard EGTA solution until the blue colour changes to orange-red. [Pg.332]

Pipette 25 mL of the solution to be analysed into a 250 mL conical flask and dilute to 100 mL with de-ionised water the original solution should be about 0.02M with respect to calcium and may contain barium to a concentration of up to 0.2M. Add 10 mL sodium hydroxide solution (1M) and check that the pH of the solution lies between 11 and 12 then add three drops of the indicator solution. Titrate with the standard CDTA solution until the pink colour changes to blue. [Pg.333]

Procedure. Dissolve a weighed amount of ferro-manganese (about 0.40 g) in concentrated nitric acid and then add concentrated hydrochloric acid (or use a mixture of the two concentrated acids) prolonged boiling may be necessary. Evaporate to a small volume on a water bath. Dilute with water and filter directly into a 100 mL graduated flask, wash with distilled water and finally dilute to the mark. Pipette 25.0 mL of the solution into a 500 mL conical flask, add 5 mL of 10 per cent aqueous hydroxylammonium chloride solution, 10 mL of 20 per cent aqueous triethanolamine solution, 10-35 mL of concentrated ammonia solution, about 100 mL of water, and 6 drops of thymolphthalexone indicator solution. Titrate with standard 0.05M EDTA until the colour changes from blue to colourless (or a very pale pink). [Pg.336]

Pipette 25.0 mL of the potassium ion solution (about 10 mg K + ) into a 50 mL graduated flask, add 0.5 mL 1M nitric acid and mix. Introduce 20.0 mL of the sodium tetraphenylborate solution, dilute to the mark, mix, then pour the mixture into a 150mL flask provided with a ground stopper. Shake the stoppered flask for 5 minutes on a mechanical shaker to coagulate the precipitate, then filter most of the solution through a dry Whatman No. 40 filter paper into a dry beaker. Transfer 25.0 mL of the filtrate into a 250 mL conical flask and add 75 mL of water, 1.0 mL of iron(III) nitrate solution, and 1.0 mL of sodium thiocyanate solution. Titrate with the mercury(II) nitrate solution as described above. [Pg.359]

Only freshly prepared starch solution should be used. Two millilitres of a 1 per cent solution per 100 mL of the solution to be titrated is a satisfactory amount the same volume of starch solution should always be added in a titration. In the titration of iodine, starch must not be added until just before the end point is reached. Apart from the fact that the fading of the iodine colour is a good indication of the approach at the end point, if the starch solution is added when the iodine concentration is high, some iodine may remain adsorbed even at the end point. The indicator blank is negligibly small in iodimetric and iodometric titrations of 0.05M solutions with more dilute solutions, it must be determined in a liquid having the same composition as the solution titrated has at the end point. [Pg.388]

If it is desired to base the standardisation directly upon arsenic(III) oxide, proceed as follows. Weigh out accurately about 0.20 g of pure arsenic(III) oxide into a conical flask, dissolve it in 10 mL of 1M sodium hydroxide, and add a small excess of dilute sulphuric acid (say, 12-15 mL of 0.5M acid). Mix thoroughly and cautiously. Then add carefully a solution of 2 g of sodium hydrogencarbonate in 50 mL of water, followed by 2 mL of starch solution. Titrate slowly with the iodine solution to the first blue colour. Repeat with two other similar quantities of the oxide. [Pg.390]

Better results are obtained by transferring 25.0 mL of the diluted hydrogen peroxide solution to a conical flask, and adding 100 mL 1M(1 20) sulphuric acid. Pass a slow stream of carbon dioxide or nitrogen through the flask, add 10 mL of 10 per cent potassium iodide solution, followed by three drops of 3 per cent ammonium molybdate solution. Titrate the liberated iodine immediately with standard 0.1M sodium thiosulphate in the usual way. [Pg.395]

Gravimetric and volumetric methods are practicable for the quantitative determination of the a-sulfo fatty acid esters. Using gravimetric methods the surfactant is precipitated with p-toluidine or barium chloride [105]. The volumetric determination method is two-phase titration. In this technique different titrants and indicators are used. For the analysis of a-sulfo fatty acid esters the quaternary ammonium surfactant hyamine 1622 (p,f-octylphenoxyethyldimethyl-ammonium chloride) is used as the titrant [106]. The indicator depends on the pH value of the titration solution. Titration with a phenol red indicator is carried out at a pH of 9, methylene blue is used in acid medium [106], and a mixed indicator of a cationic (dimidium bromide) and an anionic (disulfine blue VN150) dye can be used in an acid and basic medium [105]. [Pg.492]

C04-0030. The acidic component of vinegar is acetic acid. When 5.00 mL of vinegar was added to water and the solution titrated with the 0.1250 M NaOH, it took 33.8 mL to reach the stoichiometric point. Calculate the molarity of acetic acid in vinegar. [Pg.245]

As a rule of thumb, in 0.15 M NaCl (or KCl) solutions titrated with NaOH (or KOH), acids start to precipitate as salts above log (S/Sq)=4 and bases above log (S/So) = 3. This has been called the sdiff i-4 approximation [49]. With other counterions, such as phosphate, different trends are evident [15]. [Pg.69]

In the sodium borate solution containing bromide, when the pH 4 buffer is added before the potassium iodate solution, titrations give low total residual chlorine concentrations. This loss increases with the amount of stirring time between the addition of the reagents. Even for a stirring time of 10 seconds, there is a loss of about 17% of the total residual chlorine. If the solution were stirred for 30 min, 85% of the chlorine would have disappeared. The concentration of total residual chlorine determined by the reference methods does not change throughout the experiment. This implies that this loss of chlorine does not occur in the reaction vessel, but in the titration cell as a result of the analytical procedure. [Pg.123]

For other cases, such as La3+ where more detail is required about the nature of the species present in solution, titration data can be computer fit to more complicated multi-equilibrium models containing Mx 1 v( OR)v forms whose stoichiometry is suggested by information gained from independent spectroscopic or kinetic techniques. One must be mindful of the pitfalls of simply fitting the potentiometric data to complex multi-component models for which there is no independent evidence for the various species. Without some evidence for the species put into the fit, the procedure simply becomes an uncritical mathematical exercise of adding and removing various real and proposed components until the goodness of fit is satisfactory. [Pg.279]

Experimental values from 2mmoldnP3 solutions titrated in methanol according to procedures in refs. 6 and 7. [Pg.302]

Triprolidine hydrochloride is dissolved, with warming if necessary, in glacial acetic acid. Mercuric acetate test solution is added and the solution titrated with 0.1N perchloric acid, the end-point being determined potentiometrically. Each ml. of 0.1N perchloric acid is equivalent to 0.05 mmole of triprolidine hydrochloride.1... [Pg.522]

Calculate the mass of NaOCl present in the diluted bleaching solution titrated. [Pg.272]

Number of moles of OCI ion in diluted bleaching solution titrated, mol... [Pg.275]

Optical Properties. The peripheral positive charges on the pz greatly lower the pvalues of the pyrrole protons of 42 in aqueous solution. Titrations... [Pg.501]

Standardization. A JR. sodium fluoride (25 mg.) was dissolved in water and the solution titrated with thorium nitrate. [Pg.225]

Procedure Weigh accurately 0.15 g of mephenesin and dissolve in 50 ml of DW into a 250 ml iodine-flask. Add to it 25.0 ml of 0.1 N potassium bromate solution and 10.0 g of powdered potassium bromide. After the dissolution of KBr, add 10 ml of hydrochloric acid, insert the moistened stopper, and after 10 seconds add 10 ml of potassium iodide solution. Titrate with 0.1 N sodium thiosulphate using starch solution as indicator. Each ml of 0.1 N potassium bromate is equivalent to 0.00911 g of C10H,4O3. [Pg.218]

Titrations were carried out at room temperature. The volume of amine solution titrated was 50 ml and this was magnetically stirred during the addition of titrant. The titrant was added in 0.5 ml quantities. After each addition of titrant, approximately one minute was allowed before measurement were made to reach ionic equilibrium. [Pg.329]

Add one drop of 0.1 M HCI to convert the above pink colour back to colourless, then add 10 ml 4% NaF solution. Titrate with 0.1 M HCI, stirring constantly, until the pink colour just disappears. Next add two more drops of indicator, and if a pink colour returns, titrate again until it disappears and remains colourless for 2 min. This second titration is equivalent to the amount of exchangeable aluminium. The associated equations are ... [Pg.67]

Elemental composition Cu 64.18%, Cl 35.82%. Copper(I) chloride is dissolved in nitric acid, diluted appropriately and analyzed for copper by AA or ICP techniques or determined nondestructively by X-ray techniques (see Copper). For chloride analysis, a small amount of powdered material is dissolved in water and the aqueous solution titrated against a standard solution of silver nitrate using potassium chromate indicator. Alternatively, chloride ion in aqueous solution may be analyzed by ion chromatography or chloride ion-selective electrode. Although the compound is only sparingly soluble in water, detection limits in these analyses are in low ppm levels, and, therefore, dissolving 100 mg in a liter of water should be adequate to carry out aU analyses. [Pg.262]

Both the Indonesian Pharmacopoeia 1995 [9] and the United States Pharmacopoeia 23 [11 j follow the same procedure. About 500 mg of benzoic acid (accurately weight) is dissolved in 25 mL of dilute alcohol that previously has been neutralized with 0.1 N NaOH, phenolphthalein TS is added, and that solution titrated with 0.1 N NaOH to a pink endpoint. [Pg.31]

Wang has determined citric acid and procaine in Xiaozhi injectable (an anti-hemorrhoid agent) by two-phase titration [81]. With constant shaking, a mixture of 1 1 1 2 Xiaozhi solution - water - chloroform -ethanol was titrated against 0.1 M sodium hydroxide to the phenolphthalein end point, thus obtaining the citric acid content. Dilute nitric acid was then added to the solution until the pink color disappeared, and the solution titrated against 0.1 M silver nitrate (with 5 drops of... [Pg.424]


See other pages where Solution titration is mentioned: [Pg.1163]    [Pg.340]    [Pg.275]    [Pg.350]    [Pg.365]    [Pg.42]    [Pg.122]    [Pg.1432]    [Pg.263]    [Pg.274]    [Pg.274]    [Pg.274]    [Pg.309]    [Pg.123]   
See also in sourсe #XX -- [ Pg.96 , Pg.97 ]




SEARCH



© 2024 chempedia.info