Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantitative analysis experiment

Consider what you have learned about limiting reactants when you design your quantitative analysis experiment at the end of Unit 2. Imagine you add one reactant (A) to an unknown amount of a second reactant (B). You intend to analyze the products (C) in order to calculate the amount of B. In this case, which reactant should be the limiting reactant, A or B How do you know which reactant is the limiting reactant when you do not know the amount of reactant B ... [Pg.259]

Equation 9.6 is unnecessarily complex. The pathlength is a constant value, as in any quantitative analysis experiment it can readily be assumed that a single cell or accessory will be used for the analysis. Thus, the absorptivities can be combined with the pathlength to give a new parameter, k k = ah) ... [Pg.208]

An analysis, particularly a quantitative analysis, is usually performed on several replicate samples. How do we report the result for such an experiment when results for the replicates are scattered around a central value To complicate matters further, the analysis of each replicate usually requires multiple measurements that, themselves, are scattered around a central value. [Pg.70]

Standardization—External standards, standard additions, and internal standards are a common feature of many quantitative analyses. Suggested experiments using these standardization methods are found in later chapters. A good project experiment for introducing external standardization, standard additions, and the importance of the sample s matrix is to explore the effect of pH on the quantitative analysis of an acid-base indicator. Using bromothymol blue as an example, external standards can be prepared in a pH 9 buffer and used to analyze samples buffered to different pHs in the range of 6-10. Results can be compared with those obtained using a standard addition. [Pg.130]

Correcting for Residual Current In any quantitative analysis the signal due to the analyte must be corrected for signals arising from other sources. The total measured current in any voltammetric experiment, itot> consists of two parts that due to the analyte s oxidation or reduction, and a background, or residual, current, ir. [Pg.521]

This experiment introduces hydrodynamic voltammetry using a rotating working electrode. Its application for the quantitative analysis of K4Fe(CN)6 is demonstrated. [Pg.535]

The technique of hydrodynamic modulation voltammetry (HMV), in which the rate of stirring is pulsed between high and low values, is demonstrated in this experiment. The application of HMV for the quantitative analysis of ascorbic acid in vitamin C tablets using the method of standard additions also is outlined. [Pg.535]

The application of anodic stripping voltammetry for the quantitative analysis of Cd, Pb, and Cu in natural waters is described in this experiment. [Pg.535]

Commercially available kits for monitoring blood-glucose use an amperometric biosensor incorporating the enzyme glucose oxidase. This experiment describes how such monitors can be adapted to the quantitative analysis of glucose in beverages. [Pg.535]

The principle of headspace sampling is introduced in this experiment using a mixture of methanol, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, benzene, toluene, and p-xylene. Directions are given for evaluating the distribution coefficient for the partitioning of a volatile species between the liquid and vapor phase and for its quantitative analysis in the liquid phase. Both packed (OV-101) and capillary (5% phenyl silicone) columns were used. The GG is equipped with a flame ionization detector. [Pg.611]

This experiment describes a quantitative analysis for the active ingredients in a prescription antipsychotic medication. The separation makes use of a cyanopropyl derivatized column and a mobile phase of 70% v/v acetonitrile, 5% v/v methanol, and 25% v/v 0.1 M aqueous KH2PO4. A UV detector set to 215 nm is used to measure the eluent s absorbance. [Pg.612]

This experiment describes the quantitative analysis of the asthma medication Quadrinal for the active ingredients theophylline, salicylic acid, phenobarbital, ephedrine HGl, and potassium iodide. Separations are carried out using a Gi8 column with a mobile phase of 19% v/v acetonitrile, 80% v/v water, and 1% acetic acid. A small amount of triethylamine (0.03% v/v) is included to ensure the elution of ephedrine HGl. A UV detector set to 254 nm is used to record the chromatogram. [Pg.612]

This experiment describes a quantitative analysis for caffeine, theobromine, and theophylline in tea, pain killers, and cocoa. Separations are accomplished by MEKC using a pH 8.25 borate-phosphate buffer with added SDS. A UV detector set to 214 nm is used to record the electropherogram. An internal standard of phenobarbital is included for quantitative work. [Pg.614]

This experiment describes a variable-size simplex optimization of the quantitative analysis of vanadium as... [Pg.700]

This experiment demonstrates how control charts and an analysis of variance can be used to evaluate the quality of results in a quantitative analysis for chlorophyll a and b in plant material. [Pg.722]

To further clarify the role of magnetic effects on compressibility, a shock compression experiment was performed on an fee 28.5-at. % Ni sample whose initial temperature was raised to 130°C. As is shown in Table 5.1, the compressibility was found to decrease to a value consistent with the nonmagnetic compressibility. Thus, the sharp change in compressibility, the critical values for the transition, and the magnitudes of the compressibility under the various conditions give a clear demonstration that a second-order magnetic transition has been observed, and we will proceed with a quantitative analysis of the transition. [Pg.120]

To obtain an accurate quantitative analysis of the composition of a mixture, a knowledge of the response of the detector to each component is required. If the detector response is not the same for each component, then the areas under the peaks clearly cannot be used as a direct measure of the proportion of the components in the mixture. The experiment described illustrates the use of an internal normalisation method for the quantitative analysis of a mixture of the following three components ethyl acetate (ethanoate), octane, and ethyl n-propyl ketone (hexan-3-one). [Pg.249]

A sophisticated quantitative analysis of experimental data was performed by Voltz et al. (96). Their experiment was performed over commercially available platinum catalysts on pellets and monoliths, with temperatures and gaseous compositions simulating exhaust gases. They found that carbon monoxide, propylene, and nitric oxide all exhibit strong poisoning effects on all kinetic rates. Their data can be fitted by equations of the form ... [Pg.91]

Steady-state experiments can also be designed within the same kind of strategy. As an example, we can cite recent works [25,45], where the results of a quantitative analysis of the resolved absorption spectra of a number of trans and cis isomers of cyanine dyes were eompared with calculated oscillator strengths and transition energies so as to propose the identification of the observed phototropic species as well defined cis isomers. [Pg.385]

The application of 13C NMR for the rapid analysis of the oil composition of oil seeds is well known [16], 13C NMR has recently been applied to the quantitative analysis of the most abundant fatty acids in olive oil [17]. The values obtained by this method differed by only up to 5% compared with GLC analysis. The quantitative analysis was applied to the olefmic region of the high resolution 13C NMR spectrum of virgin olive oil to detect adulteration by other oils which differed significantly in their fatty acid composition. The application of the methodology for the detection of adulteration of olive oil by hazelnut oil is more challenging as both oils have similar chemical profiles and further experiments are in progress. [Pg.479]

It appears that purification of commercially available solvents is sometimes required for the complete elimination of impurity resonances. Occasionally, these impurities may be turned into advantage, as in the case of C2D2CI4 where the (known) C2DHCI4 content may be used as an internal standard for quantitation. Thus, removal of every impurity peak is not always essential for identification and quantitative analysis of stabilisers in PE. Determination of the concentration of additives in a polymer sample can also be accomplished by incorporation of an internal NMR standard to the dissolution prepared for analysis. The internal standard (preferably aromatic) should be stable at the temperature of the NMR experiment, and could be any high-boiling compound which does not generate conflicting NMR resonances, and for which the proton spin-lattice relaxation times are known. 1,3,5-Trichlorobenzene meets the requirements for an internal NMR standard [48]. The concentration should be comparable to that of the analytes to be determined. [Pg.698]

The purpose of this monograph, the first to be dedicated exclusively to the analytics of additives in polymers, is to evaluate critically the extensive problemsolving experience in the polymer industry. Although this book is not intended to be a treatise on modem analytical tools in general or on polymer analysis en large, an outline of the principles and characteristics of relevant instrumental techniques (without hands-on details) was deemed necessary to clarify the current state-of-the-art of the analysis of additives in polymers and to accustom the reader to the unavoidable professional nomenclature. The book, which provides an in-depth overview of additive analysis by focusing on a wide array of applications in R D, production, quality control and technical service, reflects the recent explosive development of the field. Rather than being a compendium, cookery book or laboratory manual for qualitative and/or quantitative analysis of specific additives in a variety of commercial polymers, with no limits to impractical academic exoticism (analysis for its own sake), the book focuses on the fundamental characteristics of the arsenal of techniques utilised industrially in direct relation... [Pg.828]

Synopsis of Experiment and Results. The material is irradiated during straining and relaxation. The example shows that a nanostructure which is hard to interpret from a series of scattering patterns may clearly reveal its complex domain structure after transformation to the CDF. Different structural entities are identified which respond each in a different way on mechanical load. The shape of the basic particles is identified (cylinders). The arrangement of the cylinders is determined. Thus the semi-quantitative analysis of the CDF provides the information necessary for the selection and definition of a suitable complex model which is required for a... [Pg.172]

In this chapter, we will show how nonequilibrium methods can be used to calculate equilibrium free energies. This may appear contradictory at first glance. However, as was shown by Jarzynski [1, 2], nonequilibrium perturbations can be used to obtain equilibrium free energies in a formally exact way. Moreover, Jarzynski s identity also provides the basis for a quantitative analysis of experiments involving the mechanical manipulation of single molecules using, e.g., force microscopes or laser tweezers [3-6]. [Pg.171]


See other pages where Quantitative analysis experiment is mentioned: [Pg.533]    [Pg.534]    [Pg.418]    [Pg.387]    [Pg.901]    [Pg.367]    [Pg.84]    [Pg.314]    [Pg.422]    [Pg.559]    [Pg.210]    [Pg.499]    [Pg.132]    [Pg.779]    [Pg.189]    [Pg.134]    [Pg.309]    [Pg.376]    [Pg.402]    [Pg.405]    [Pg.671]    [Pg.33]    [Pg.150]    [Pg.347]    [Pg.87]    [Pg.101]    [Pg.6]   


SEARCH



Experiment 26 Quantitative Infrared Analysis of Isopropyl Alcohol in Toluene

Experiment 29 Quantitative Flame Atomic Absorption Analysis of a Prepared Sample

Experiments analysis

© 2024 chempedia.info