Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Qualitative analysis case studies

The purpose of this chapter is to show that improvements in safety, quality, and productivity are possible by applying some of the ideas and techniques described in this book. The fact that error reduction approaches have not yet been widely adopted in the CPI, together with questions of confidentiality, has meant that it has not been possible to provide examples of all the techniques described in the book. However, the examples provided in this chapter illustrate some of the most generally useful qualitative techniques. Case studies of quantitative techniques are provided separately in the quantification section (Chapter 5). The first two case studies illustrate the use of incident analysis techniques (Chapter 6). [Pg.292]

Description of QRA analysis case study A hazard and operability study was used to identify hazardous scenarios arising from the process. These were qualitatively assessed and a risk ranking was established. With knowledge of the operational procedures and intended layout of the plant, the key potential accidents identified in the HAZOP have been rationalised for the purposes of the case study to ... [Pg.447]

Case Study Illustrating Qualitative Analysis Methods in SPEAR... [Pg.217]

Because most research effort in the human reliability domain has focused on the quantification of error probabilities, a large number of techniques exist. However, a relatively small number of these techniques have actually been applied in practical risk assessments, and even fewer have been used in the CPI. For this reason, in this section only three techniques will be described in detail. More extensive reviews are available from other sources (e.g., Kirwan et al., 1988 Kirwan, 1990 Meister, 1984). Following a brief description of each technique, a case study will be provided to illustrate the application of the technique in practice. As emphasized in the early part of this chapter, quantification has to be preceded by a rigorous qualitative analysis in order to ensure that all errors with significant consequences are identified. If the qualitative analysis is incomplete, then quanhfication will be inaccurate. It is also important to be aware of the limitations of the accuracy of the data generally available... [Pg.222]

Only arc/spark, plasma emission, plasma mass spectrometry and X-ray emission spectrometry are suitable techniques for qualitative analysis as in each case the relevant spectral ranges can be scanned and studied simply and quickly. Quantitative methods based on the emission of electromagnetic radiation rely on the direct proportionality between emitted intensity and the concentration of the analyte. The exact nature of the relation is complex and varies with the technique it will be discussed more fully in the appropriate sections. Quantitative measurements by atomic absorption spectrometry depend upon a relation which closely resembles the Beer-Lambert law relating to molecular absorption in solution (p. 357 etal.). [Pg.289]

Many chromophores are suitable for use in the exciton chirality method. One of the features required for such a chromophore is its planarity or near-planarity. Nonplanar (inherently dissymmetric) chromophores would contribute to the CD spectra by other mechanisms. The other limiting factor is the position of the transition in the spectral region studied. For example, the 1B transition in the alkyl-substituted benzene chromophore appears near the short-wavelength recording limit around 200 nm, making its use in the exciton chirality method less attractive. Furthermore, the direction of polarization of the lB transition in alkyl-substituted benzene derivatives is not readily determined. In such cases calculation of the rotatory strength is more reliable than qualitative analysis. [Pg.515]

The best studied is the case of a second order system (s = 2). Since in this book we consider systems with a maximal number of intermediate products s < 2, let us illustrate what was said with two examples. (For s > 2 the qualitative analysis is much less obvious.)... [Pg.59]

Commonly the compromising conditions of routine environmental monitoring lead to restrictions on the accuracy and the precision of sampling and analysis. The purpose of this section is to show that under these conditions multivariate statistical methods are a useful tool for qualitative extraction of new information about the degree of stress of the investigated areas, and for identification of emission sources and their seasonal variations. The results represented from investigation of the impact of particulate emissions can, in principle, be transferred to other environmental analytical problems, as described in the following case studies. [Pg.269]

Each chapter builds on the previous ones, and so chapters should be read in the order given to ensure complete understanding of the text. A glossary of terms is provided at the end of the chapters, followed by two annexes with case-studies to illustrate both qualitative (Annex 1) and quantitative (Annex 2) uncertainty analysis. [Pg.4]

An uncertainty analysis gives the assessor the opportunity to re-evaluate the scenario, model approaches and parameters of the analysis and to consider their influence in the overall analysis. The practical impact of uncertainty analysis is illustrated within the annexed case-studies, which also clarify how uncertainty analyses follow a systematic methodology, based on a tiered approach, and consider all possible sources of uncertainty. The first step in uncertainty analysis consists of a screening, followed by a qualitative analysis and two levels of quantitative analysis, using deterministic and probabilistic data. The assessor should be aware that an uncertainty analysis cannot answer all the questions, which, moreover, may lead to new questions. [Pg.84]

ANNEX 1 CASE-STUDY—QUALITATIVE UNCERTAINTY ANALYSIS... [Pg.105]

This annex aims to illustrate qualitative uncertainty analysis through a case-study that involves estimation of exposure to a persistent, bioaccumulative and lipid-soluble group of chemicals to which humans are exposed mainly through fish consumption, which is referred to here as PBLx. Examples of appropriate communication of the outcome to various target audiences are also considered. [Pg.105]

The analysis of substituent effects on RSE values does not only aid our understanding, but also holds a degree of predictive power, allowing one to design and select species with optimal radical stabilities for specific practical applications. Indeed, provided due attention is given to the effects of substituents on the other species involved, RSEs can even provide a qualitative guide to the thermodynamic stability of radicals in other types of chemical reaction, such as addition and beta-scission. In this section, some practical applications of RSE values are illustrated using some selected case studies from the literature. [Pg.91]

Near-infrared absorption is therefore essentially due to combination and overtone modes of higher energy fundamentals, such as C-H, N-H, and O-H stretches, which appear as lower overtones and lower order combination modes. Since the NIR absorption of polyatomic molecules thus mainly reflects vibrational contributions from very few functional groups, NIR spectroscopy is less suitable for detailed qualitative analysis than IR, which shows all (active) fundamentals and the overtones and combination modes of low-energy vibrations. On the other hand, since the vibrational intensities of near-infrared bands are considerably lower than those of corresponding infrared bands, optical layers of reasonable size (millimeters, centimeters) may be transmitted in the NIR, even in the case of liquid samples, compared to the layers of pm size which are detected in the infrared. This has important consequences for the direct quantitative study of chemical reactions, chemical equilibria, and phase equilibria via NIR spectroscopy. [Pg.519]

A third type of MS/MS instruments is a hybrid of tandem-in-space and tandem-in-time devices, including the Q-trap (QQ-2D-linear trap) [45] and the ion trap-FT-ICR (2D-linear ion trap-FT-ICR) [46]. The Q-trap takes the configuration of triple quadrupole, with the third quadrupole replaced by a 2D-linear ion trap. The uniqueness of this design is that the 2D-linear ion trap component can be used to perform either (a) a normal quadrupole scan function in the RF/DC mode or (b) a trap scan function by applying the RF potential to the quadrupole. It is well-suited for both qualitative and quantitative studies. In the case of ion Trap-FT-ICR, it combines ion accumulation and MS" features of a 2D-linear ion trap with excellent mass analysis capability (mass resolution, mass accuracy, and sensitivity) of FT-ICR. [Pg.299]

The qualitative analysis of SARs described above has shed light on the highly complex nature of SARs. In medicinal chemistry, SARs are typically analyzed on a case-by-case basis. Thus far, few if any approaches have been introduced to systematically and quantitatively describe SAR characteristics of different compound classes. In the following, two related approaches are presented that provide a quantitative measure of SAR characteristics only based on 2D structural similarity and binding data. Limiting similarity assessment to 2D molecular representations departs from the 3D similarity-oriented correlation studies described above, but makes it possible to extend quantitative SAR analysis to targets for which no, or only few, relevant X-ray structures are available. [Pg.136]


See other pages where Qualitative analysis case studies is mentioned: [Pg.173]    [Pg.695]    [Pg.203]    [Pg.158]    [Pg.300]    [Pg.117]    [Pg.68]    [Pg.31]    [Pg.399]    [Pg.146]    [Pg.45]    [Pg.243]    [Pg.277]    [Pg.464]    [Pg.166]    [Pg.299]    [Pg.205]    [Pg.211]    [Pg.464]    [Pg.74]    [Pg.90]    [Pg.132]    [Pg.212]    [Pg.490]    [Pg.151]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



ANNEX 1 CASE-STUDY—QUALITATIVE UNCERTAINTY ANALYSIS

Case study analysis

Qualitative analysis

© 2024 chempedia.info