Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extrinsic proteins

We have consistently talked about the polarization of a fluor bound to a macromoleeule. What about the intrinsic fluorescence of the macromolecules and its polarization For example the intrinsic fluorescence of tryptophan in a protein and utilization of its polarization in stud3dng the protein. There is a problem here. Large proteins move very slowly on a molecular scale. Thus, to observe depolarization due to motion, the lifetime of the excited state should be sufficiently long, i.e., there should be a good time lag between excitation and emission so that the molecule may show substantial movement in that time and depolarization may occur. For very small proteins, intrinsic fluorescence may be of some use, but for larger proteins, extrinsic fluorescence has to be made use of. [Pg.238]

Fig. 1.2. Membrane proteins extrinsic protein (a) intrinsic proteins penetrating proteins [ectoprotein (b), endoprotein (c)], spanning protein (d), included protein (e). Fig. 1.2. Membrane proteins extrinsic protein (a) intrinsic proteins penetrating proteins [ectoprotein (b), endoprotein (c)], spanning protein (d), included protein (e).
In 1929, Castie (7) tied the work of Combe and Addison with that of Whipple, Miaot, and Murphy by ptoposiag that both an extrinsic factor and an intrinsic factor ate iavolved ia the coatrol of pernicious anemia. The extrinsic factor, from food, is vitamin 2- Th intrinsic factor is a specific B22-biading protein secreted by the stomach. This protein is requited for vitamin B 2 absorption. [Pg.107]

Extrinsic Pathway. Coagulation is initiated when tissue extracts with Hpid—protein properties are released from the membranes of endothehal cells following injury or insult. These substances, collectively designated tissue thromboplastin, complex with circulating Factor VII and in the presence of calcium ions subsequentiy activate Factor X (Fig. 1). In vitro evidence suggests that Factor X can be activated less rapidly through the interaction of kaUikrein [9001-01-8] with Factor VII. [Pg.172]

Singer and Nicolson also pointed out that proteins can be associated with the surface of this bilayer or embedded in the bilayer to varying degrees (Figure 9.6). They defined two classes of membrane proteins. The first, called peripheral proteins (or extrinsic proteins), includes those that do not penetrate the bilayer to any significant degree and are associated with the membrane by virtue... [Pg.263]

Mnrata, N., and Miyao, M., 1985. Extrinsic membrane proteins in the photosynthedc oxygen-evolving complex. Trends in Biochemical Sciences 10 122-124. [Pg.741]

The conformation of bovine myelin basic protein (MBP) in AOT/isooctane/water reversed micellar systems was studied by Waks et al. 67). This MBP is an extrinsic water soluble protein which attains an extended conformation in aqueous solution 68 but is more density packed at the membrane surface. The solubilization of MBP in the AOT reversed micelles depends on the water/AOT-ratio w0 68). The maximum of solubilization was observed at a w0-value as low as 5.56. The same value was obtained for another major protein component of myelin, the Folch-Pi proteolipid 69). According to fluorescence emission spectra of MBP, accessibility of the single tryptophane residue seems to be decreased in AOT reversed micelles. From CD-spectra one can conclude that there is a higher conformational rigidity in reversed micelles and a more ordered aqueous environment. [Pg.10]

Vitamin B12 is special in as far as its absorption depends on the availability of several secretory proteins, the most important being the so-called intrinsic factor (IF). IF is produced by the parietal cells of the fundic mucosa in man and is secreted simultaneously with HC1. In the small intestine, vitamin B12 (extrinsic factor) binds to the alkali-stable gastric glycoprotein IF. The molecules form a complex that resists intestinal proteolysis. In the ileum, the IF-vitamin B 12-complex attaches to specific mucosal receptors of the microvilli as soon as the chymus reaches a neutral pH. Then either cobalamin alone or the complex as a whole enters the mucosal cell. [Pg.1291]

Hemostasis is the process that stops bleeding in a blood vessel. Normal hemostasis involves a complex process of extrinsic and intrinsic factors. Figure 44-1 shows the coagulation pathway and factors involved. The copulation cascade is so named because as each factor is activated it acts as a catalyst that enhances the next reaction, with the net result being a large collection of fibrin that forms a plug in the vessel. Fibrin is the insoluble protein that is essential to clot formation. [Pg.417]

This outcome was consistent with a hypothesis that structural deterioration could have been a byproduct of microorganism activity. The higher lipid content in the poorly preserved tissue suggests that those lipids are primarily extrinsic, that is, that they were produced by bacteria and/or fungi. As the food source for such microorganisms, the protein within the bone may have been substantially altered in concert with the microstructure deterioration. The quantification of the changes to the organic fraction became our next focus of research. [Pg.147]

Initiation of the fibrin clot in response to tissue injury is carried out by the extrinsic pathway. How the intrinsic pathway is activated in vivo is unclear, but it involves a negatively charged surface. The intrinsic and extrinsic pathways converge in a final common path-vray involving the activation of prothrombin to thrombin and the thrombin-catalyzed cleavage of fibrinogen to form the fibrin clot. The intrinsic, extrinsic, and final common pathways are complex and involve many different proteins (Figure 51-1 and Table 51-1). In... [Pg.598]

Tun C, Guo W, Nguyen H, Yun B, Libby RT, Morrison RS, Garden GA (2007) Activation of the extrinsic caspase pathway in cultured cortical neurons requires p53-mediated down-regulation of the X-linked inhibitor of apoptosis protein to induce apoptosis. J Neurochem 102 1206-1219... [Pg.250]

Fluorescent probes are divided in two categories, i.e., intrinsic and extrinsic probes. Tryptophan is the most widely used intrinsic probe. The absorption spectrum, centered at 280 nm, displays two overlapping absorbance transitions. In contrast, the fluorescence emission spectrum is broad and is characterized by a large Stokes shift, which varies with the polarity of the environment. The fluorescence emission peak is at about 350 nm in water but the peak shifts to about 315 nm in nonpolar media, such as within the hydrophobic core of folded proteins. Vitamin A, located in milk fat globules, may be used as an intrinsic probe to follow, for example, the changes of triglyceride physical state as a function of temperature [20]. Extrinsic probes are used to characterize molecular events when intrinsic fluorophores are absent or are so numerous that the interpretation of the data becomes ambiguous. Extrinsic probes may also be used to obtain additional or complementary information from a specific macromolecular domain or from an oil water interface. [Pg.267]

In the case of PS II membrane proteins, as discussed above, the hydrophobic and hydrophilic pairs of attached lipids can partially support the protein complex at the air-water interface, despite their large size and density. However, in the case of PS II core complex, the detergent strips the attached lipids and some extrinsic proteins. The remaining protein complex is water soluble. It is very difficult to prepare a stable monolayer of water-soluble proteins with the Langmuir method. Indeed, it is hard to directly prepare a stable monolayer of PS II core complex because of its water solubility as well as density. One possible solution is to change the density and ionic strength of the subphase [9]. [Pg.643]

At present, the activation of the extrinsic coagulation system is considered to be of more importance in the initiation of DIC than the activation of the contact system (LI2, Cl 3). The activation of the extrinsic system starts with the release of tissue factor (TF) from endothelial cells. TF is a macromolecule, composed of a protein and a lipid fraction, that is synthesized by endothelial cells and monocytes. TF... [Pg.76]

Proteins either strengthen the membrane structure (building proteins) or fulfil various transport or catalytic functions (functional proteins). They are often only electrostatically bound to the membrane surface (extrinsic proteins) or are covalently bound to the lipoprotein complexes (intrinsic or integral proteins). They are usually present in the form of an or-helix or random coil. Some integral proteins penetrate through the membrane (see Section 6.4.2). [Pg.448]

Proteins are also associated with the lipid bilayer and essentially float within it. Intrinsic proteins are embedded within and span the membrane, and extrinsic proteins are found on the internal or external surface of the... [Pg.9]

Although the final steps of the blood clotting cascade are identical, the initial steps can occur via two distinct pathways extrinsic and intrinsic. Both pathways are initiated when specific clotting proteins make contact with specific surface molecules exposed only upon damage to a blood vessel. Clotting occurs much more rapidly when initiated via the extrinsic pathway. [Pg.330]

Two coagulation factors function uniquely in the extrinsic pathway factor III (tissue factor) and factor VII. Tissue factor is an integral membrane protein present in a wide variety of tissue types (particularly lung and brain). This protein is exposed to blood constituents only upon rupture of... [Pg.330]

III Tissue factor (thromboplastin) Extrinsic Accessory tissue protein which initiates extrinsic pathway... [Pg.330]

The initial steps of the intrinsic pathway are somewhat more complicated. This system requires the presence of clotting factors VIII, IX, XI and XII, all of which, except for factor VIII, are endo-acting proteases. As in the case of the extrinsic pathway, the intrinsic pathway is triggered upon exposure of the clotting factors to proteins present on the surface of body tissue exposed by vascular injury. These protein binding/activation sites probably include collagen. [Pg.331]

Myelin in situ has a water content of about 40%. The dry mass of both CNS and PNS myelin is characterized by a high proportion of lipid (70-85%) and, consequently, a low proportion of protein (15-30%). By comparison, most biological membranes have a higher ratio of proteins to lipids. The currently accepted view of membrane structure is that of a lipid bilayer with integral membrane proteins embedded in the bilayer and other extrinsic proteins attached to one surface or the other by weaker linkages. Proteins and lipids are asymmetrically distributed in this bilayer, with only partial asymmetry of the lipids. The proposed molecular architecture of the layered membranes of compact myelin fits such a concept (Fig. 4-11). Models of compact myelin are based on data from electron microscopy, immunostaining, X-ray diffraction, surface probes studies, structural abnormalities in mutant mice, correlations between structure and composition in various species, and predictions of protein structure from sequencing information [4]. [Pg.56]


See other pages where Extrinsic proteins is mentioned: [Pg.47]    [Pg.223]    [Pg.138]    [Pg.27]    [Pg.47]    [Pg.223]    [Pg.138]    [Pg.27]    [Pg.170]    [Pg.172]    [Pg.404]    [Pg.311]    [Pg.719]    [Pg.725]    [Pg.725]    [Pg.318]    [Pg.1231]    [Pg.10]    [Pg.53]    [Pg.569]    [Pg.641]    [Pg.136]    [Pg.76]    [Pg.79]    [Pg.146]    [Pg.150]    [Pg.10]    [Pg.168]    [Pg.92]    [Pg.53]   
See also in sourсe #XX -- [ Pg.9 ]

See also in sourсe #XX -- [ Pg.171 ]




SEARCH



Cell membrane extrinsic proteins

Extrinsic factors stabilizing the native state of proteins at high temperatures

Extrinsic membrane protein

Protein extrinsic fluorescence

Protein stability extrinsic determinants

© 2024 chempedia.info