Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propylene Specifications

Integration with polypropylene manufacture can occur in those cases when production is very large, or there is some cracking of heavier material or else additional propylene can be sourced from a local refinery or a propylene specific production operation. [Pg.139]

V/26 PHYSICAL CONSTANTS OF POLY(PROPYLENE) Specific Heat See Heat Capacity. [Pg.730]

Today the most efficient catalysts are complex mixed metal oxides that consist of Bi, Mo, Fe, Ni, and/or Co, K, and either P, B, W, or Sb. Many additional combinations of metals have been patented, along with specific catalyst preparation methods. Most catalysts used commercially today are extmded neat metal oxides as opposed to supported impregnated metal oxides. Propylene conversions are generally better than 93%. Acrolein selectivities of 80 to 90% are typical. [Pg.123]

Acrolein is produced according to the specifications in Table 3. Acetaldehyde and acetone are the principal carbonyl impurities in freshly distilled acrolein. Acrolein dimer accumulates at 0.50% in 30 days at 25°C. Analysis by two gas chromatographic methods with thermal conductivity detectors can determine all significant impurities in acrolein. The analysis with Porapak Q, 175—300 p.m (50—80 mesh), programmed from 60 to 250°C at 10°C/min, does not separate acetone, propionaldehyde, and propylene oxide from acrolein. These separations are made with 20% Tergitol E-35 on 250—350 p.m (45—60 mesh) Chromosorb W, kept at 40°C until acrolein elutes and then programmed rapidly to 190°C to elute the remaining components. [Pg.124]

The active site on the surface of selective propylene ammoxidation catalyst contains three critical functionalities associated with the specific metal components of the catalyst (37—39) an a-H abstraction component such as Sb ", or Te" " an olefin chemisorption and oxygen or nitrogen insertion component such as Mo " or and a redox couple such as Fe " /Fe " or Ce " /Ce" " to enhance transfer of lattice oxygen between the bulk and surface... [Pg.183]

Propylene oxide-based glycerol can be produced by rearrangement of propylene oxide [75-56-9] (qv) to allyl alcohol over triUthium phosphate catalyst at 200—250°C (yield 80—85%) (4), followed by any of the appropriate steps shown in Figure 1. The specific route commercially employed is peracetic acid epoxidation of allyl alcohol to glycidol followed by hydrolysis to glycerol (5). The newest international synthesis plants employ this basic scheme. [Pg.347]

Cables are available in a variety of constmctions and materials, in order to meet the requirements of industry specifications and the physical environment. For indoor usage, such as for Local Area Networks (LAN), the codes require that the cables should pass very strict fire and smoke release specifications. In these cases, highly dame retardant and low smoke materials are used, based on halogenated polymers such as duorinated ethylene—propylene polymers (like PTFE or FEP) or poly(vinyl chloride) (PVC). Eor outdoor usage, where fire retardancy is not an issue, polyethylene can be used at a lower cost. [Pg.323]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

In general, when the product is a fraction from cmde oil that includes a large number of individual hydrocarbons, the fraction is classified as a refined product. Examples of refined products are gasoline, diesel fuel, heating oils, lubricants, waxes, asphalt, and coke. In contrast, when the product is limited to, perhaps, one or two specific hydrocarbons of high purity, the fraction is classified as a petrochemical product. Examples of petrochemicals are ethylene (qv), propylene (qv), benzene (qv), toluene, and xylene (see Btx processing). [Pg.202]

Table 4. Product Specification for Chemical-Grade Propylene... Table 4. Product Specification for Chemical-Grade Propylene...
Refinery Production. Refinery propylene is formed as a by-product of fluid catalytic cracking of gas oils and, to a far lesser extent, of thermal processes, eg, coking. The total amount of propylene produced depends on the mix of these processes and the specific refinery product slate. For example, in the United States, refiners have maximized gasoline production. This results in a higher level of propylene production than in Europe, where proportionally more heating oil is produced. [Pg.126]

Marine transportation is done by ship or barge in permanent containers on board or by ISO containers. Propylene oxide can be shipped by air freight, but specific regulations for domestic and international transport must be foHowed. No shipment of propylene oxide can be made on passenger ships or airlines (3,233). [Pg.142]

Propylene oxide is a high purity product. Thus only the impurities are analy2ed and reported. Table 6 Hsts typical sales specifications (8). The sales specification may vary depending on the appHcation. [Pg.142]

Emulsion polymerizations of vinyl acetate in the presence of ethylene oxide- or propylene oxide-based surfactants and protective coUoids also are characterized by the formation of graft copolymers of vinyl acetate on these materials. This was also observed in mixed systems of hydroxyethyl cellulose and nonylphenol ethoxylates. The oxyethylene chain groups supply the specific site of transfer (111). The concentration of insoluble (grafted) polymer decreases with increase in surfactant ratio, and (max) is observed at an ethoxylation degree of 8 (112). [Pg.466]

There are other commercial processes available for the production of butylenes. However, these are site or manufacturer specific, eg, the Oxirane process for the production of propylene oxide the disproportionation of higher olefins and the oligomerisation of ethylene. Any of these processes can become an important source in the future. More recentiy, the Coastal Isobutane process began commercialisation to produce isobutylene from butanes for meeting the expected demand for methyl-/ rZ-butyl ether (40). [Pg.366]

The various sources of isobutylene are C streams from fluid catalytic crackers, olefin steam crackers, isobutane dehydrogenation units, and isobutylene produced by Arco as a coproduct with propylene oxide. Isobutylene concentrations (weight basis) are 12 to 15% from fluid catalytic crackers, 45% from olefin steam crackers, 45 to 55% from isobutane dehydrogenation, and high purity isobutylene coproduced with propylene oxide. The etherification unit should be designed for the specific feedstock that will be processed. [Pg.373]

Hydrolysis to Glycols. Ethylene chlorohydrin and propylene chlorohydrin may be hydrolyzed ia the presence of such bases as alkaU metal bicarbonates sodium hydroxide, and sodium carbonate (31—33). In water at 97°C, l-chloro-2-propanol forms acid, acetone, and propylene glycol [57-55-6] simultaneously the kinetics of production are first order ia each case, and the specific rate constants are nearly equal. The relative rates of solvolysis of... [Pg.73]

Methanol to Ethylene. Methanol to ethylene economics track the economics of methane to ethylene. Methanol to gasoline has been flilly developed and, during this development, specific catalysts to produce ethylene were discovered. The economics of this process have been discussed, and a catalyst (Ni/SAPO 34) with almost 95% selectivity to ethylene has been claimed (99). Methanol is converted to dimethyl ether, which decomposes to ethylene and water the method of preparation of the catalyst rather than the active ingredient of the catalyst has made the significant improvement in yield (100). By optimizing the catalyst and process conditions, it is claimed that yields of ethylene, propylene, or both are maximized. This is still in the bench-scale stage. [Pg.443]

Liquefied Petroleum Gas The term liquefied petroleum gas (LPG) is applied to certain specific hydrocarbons which can be liquefied under moderate pressure at normal temperatures but are gaseous under normal atmospheric conditions. The chief constituents of LPG are propane, propylene, butane, butylene, and isobutane. LPG produced in the separation of heavier hydrocarbons from natural gas is mainly of the paraffinic (saturated) series. LPG derived from oil-refinery gas may contain varying low amounts of olefinic (unsaturated) hydrocamons. [Pg.2367]


See other pages where Propylene Specifications is mentioned: [Pg.125]    [Pg.195]    [Pg.966]    [Pg.270]    [Pg.125]    [Pg.195]    [Pg.966]    [Pg.270]    [Pg.26]    [Pg.365]    [Pg.365]    [Pg.366]    [Pg.368]    [Pg.505]    [Pg.324]    [Pg.182]    [Pg.408]    [Pg.415]    [Pg.148]    [Pg.415]    [Pg.73]    [Pg.136]    [Pg.142]    [Pg.476]    [Pg.189]    [Pg.189]    [Pg.349]    [Pg.519]    [Pg.187]    [Pg.190]    [Pg.487]    [Pg.481]    [Pg.444]    [Pg.459]    [Pg.747]   
See also in sourсe #XX -- [ Pg.152 ]

See also in sourсe #XX -- [ Pg.152 ]




SEARCH



© 2024 chempedia.info