Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propylene Oxide Type

Systematic name Alternative name M.p., °C. Ca]D Rotation solvent Refer- ences [Pg.73]

Methyl 3,6-anhydro-a-D-manno-pyranoside 3,6-Anhydro-D-mannonic acid 131 + 97.1 H,0 14,42 [Pg.77]

Addition of Hydrbgen Cyanide to Osones Followed by Hydrolysis. 80 [Pg.79]

Condensation of Hydroxy Aldehydes with Ethyl Glyoxylate or Ethyl [Pg.79]


Poly(alI lene glycol)s. While these can be made from polymeri2ation of any alkylene oxide, they are usually prepared either from propylene oxide as the water-insoluble type, or as water-soluble copolymers of propylene oxide and up to 50% ethylene oxide (35,36) (see Polyethers, propylene OXIDE polymers). Current worldwide production is estimated to be about 45,000 t. [Pg.245]

Esterification is one of the most important reactions of fatty acids (25). Several types of esters are produced including those resulting from reaction with monohydric alcohols, polyhydric alcohols, ethylene or propylene oxide, and acetjiene or vinyl acetate. The principal monohydric alcohols used are methyl, ethyl, propyl, isopropyl, butyl, and isobutyl alcohols (26) (see Esterification Esters, organic). [Pg.84]

In most cases, these active defoaming components are insoluble in the defoamer formulation as weU as in the foaming media, but there are cases which function by the inverted cloud-point mechanism (3). These products are soluble at low temperature and precipitate when the temperature is raised. When precipitated, these defoamer—surfactants function as defoamers when dissolved, they may act as foam stabilizers. Examples of this type are the block polymers of poly(ethylene oxide) and poly(propylene oxide) and other low HLB (hydrophilic—lipophilic balance) nonionic surfactants. [Pg.463]

Where only propylene oxide is used the resultant polymers will be of the following general type ... [Pg.795]

The polyols used are of three types polyether, polyester, and polybutadiene. The polyether diols range from 400 to about 10,000 g/mol. The most common polyethers are based on ethylene oxide, propylene oxide, and tetrahydrofuran or their copolymers. The ether link provides low temperature flexibility and low viscosity. Ethylene oxide is the most hydrophilic and thus can increase the rate of ingress of water and consequently the cure rate. However, it will crystallize slowly above about 600 g/mol. Propylene oxide is hydrophobic due to hindered access to the ether link, but still provides high permeability to small molecules like water. Tetrahydrofuran is between these two in hydrophobicity, but somewhat more expensive. Propylene oxide based diols are the most common. [Pg.733]

Epoxides such as ethylene oxide and higher olefin oxides may be produced by the catalytic oxidation of olefins in gas-liquid-particle operations of the slurry type (S7). The finely divided catalyst (for example, silver oxide on silica gel carrier) is suspended in a chemically inactive liquid, such as dibutyl-phthalate. The liquid functions as a heat sink and a heat-transfer medium, as in the three-phase Fischer-Tropsch processes. It is claimed that the process, because of the superior heat-transfer properties of the slurry reactor, may be operated at high olefin concentrations in the gaseous process stream without loss with respect to yield and selectivity, and that propylene oxide and higher... [Pg.77]

Shah et al. (1994) have studied the preparation of a class of compounds called Indans, by cross-dimerization of AMS with amylenes, using an ion-exchange resin and acid-treated clay catalysts (Eqns. (12) and (13)). Indans can be subsequently converted, e.g. by acetylation, into perfumric compounds having mu.sk odour. For example, 1,1,2,3,3-pentamethylindan, the product obtained by cross-dimerization of AMS and wo-amylene (Eqn. (12)), can be reacted with propylene oxide and /7 ra-formaldehyde to give an indan type isochroman musk compound, 6-oxa-l,l,2,3,3,8-hexamethyl-2,3,5,6,7,8-hexahydro-lH-benz(f)-indene, sold as Galaxolide commercially. [Pg.136]

A process for separating crude oil emulsions of the water-in-oil type based on certain ethylene oxide-propylene oxide block pol5miers and certain poly-glycidol ethers of phenol-formaldehyde-condensation products has been described [1026-1028]. [Pg.332]

It is commonly known that lipids, carbohydrates, and glycolipids are present in the Golgi apparatus (27). The determination of the components that react with the ZIO mixture was carried out by removing each component from tissues before incubation in the ZIO mixture. After lipid extraction by acetone (14), chloroform-methanol (15), or propylene oxide (27), no osmium-zinc precipitates could be detected in structures that normally reacted with ZIO. Blumcke et al. (15) summarized the nature of the lipids that react with the ZIO mixture as follows lipids and lipoproteins of cell membranes, neutral fat droplets (41), and lipid globules of type II pneumocytes and alveolar macrophages were, however, not as electron dense as the normally reactive lamellae containing highly unsaturated fatty acids. [Pg.237]

The only large-scale application of sucrose ethers appears to be to use poly-(9-(hydroxylpropyl) ethers, generated by alkoxylation with propylene oxide, as the polyol component for rigid polyurethanes —sucrose itself gives only brittle ones—which are used primarily in cushioning applications. The structures of these products, that is, the positions at which sucrose is alkoxylated and then carbamoylated with diisocyanates, and the type(s) of cross-linking involved, are not well defined though. [Pg.51]

As an aside to the manufacture of propylene oxide via the chlorohydrin process let us mention use of this type of chemistry to make epichlorohydrin. [Pg.169]

Lu and coworkers have synthesized a related bifunctional cobalt(lll) salen catalyst similar to that seen in Fig. 11 that contains an attached quaternary ammonium salt (Fig. 13) [36]. This catalyst was found to be very effective at copolymerizing propylene oxide and CO2. For example, in a reaction carried out at 90°C and 2.5 MPa pressure, a high molecular weight poly(propylene carbonate) = 59,000 and PDI = 1.22) was obtained with only 6% propylene carbonate byproduct. For a polymerization process performed under these reaction conditions for 0.5 h, a TOF (turnover frequency) of 5,160 h was reported. For comparative purposes, the best TOF observed for a binary catalyst system of (salen)CoX (where X is 2,4-dinitrophenolate) onium salt or base for the copolymerization of propylene oxide and CO2 at 25°C was 400-500 h for a process performed at 1.5 MPa pressure [21, 37]. On the other hand, employing catalysts of the type shown in Fig. 12, TOFs as high as 13,000 h with >99% selectivity for copolymers withMn 170,000 were obtained at 75°C and 2.0 MPa pressure [35]. The cobalt catalyst in Fig. 13 has also been shown to be effective for selective copolymer formation from styrene oxide and carbon dioxide [38]. [Pg.14]

Several other types of monomers are capable of yielding stereoisomeric polymer structures. Ordered structures are possible in the polymerization of carbonyl monomers (RCHO and RCOR ) and the ring-opening polymerizations of certain monomers. Thus, for example, the polymers from acetaldehyde and propylene oxide can have isotactic and syndiotactic structures as shown in Figs. 8-3 and 8-4. [Pg.626]

The stereochemistry of ring-opening polymerizations has been studied for epoxides, episul-fides, lactones, cycloalkenes (Sec. 8-6a), and other cyclic monomers [Pasquon et al., 1989 Tsuruta and Kawakami, 1989]. Epoxides have been studied more than any other type of monomer. A chiral cyclic monomer such as propylene oxide is capable of yielding stereoregular polymers. Polymerization of either of the two pure enantiomers yields the isotactic polymer when the reaction proceeds in a regioselective manner with bond cleavage at bond 1. [Pg.707]

In comparable reaction conditions as Pd +Cu +Y, Pd + and Cu2+ exchanged pentasil and ferrierite zeolites show a different type of activity [31]. The main products formed by propylene oxidation on these catalysts are acrolein and propionaldehyde below 120°C and 2-propanol above 120 C. Above 150°C consecutive oxidation of 2-propano1 to acetone is observed. The catalytic role of Pd and Cu in the 2-propanol synthesis is proposed to follow the Wacker concept. It is striking that when Pd + and Cu2+ are exchanged in 10-membered ring zeolites, oxidation of a primary carbon atoms seems possible, as acrolein and propionaldehyde are obtained from propylene. [Pg.229]

In the investigation of hydrocarbon partial oxidation reactions the study of the factors that determine selectivity has been of paramount importance. In the past thirty years considerable work relevant to this topic has been carried out. However, there is yet no unified hypothesis to address this problem. In this paper we suggest that the primary reaction pathway in redox type reactions on oxides is determined by the structure of the adsorbed intermediate. When the hydrocarbon intermediate (R) is bonded through a metal oxygen bond (M-O-R) partial oxidation products are likely, but when the intermediate is bonded through a direct metal-carbon bond (M-R) total oxidation products are favored. Results on two redox systems are presented ethane oxidation on vanadium oxide and propylene oxidation on molybdenum oxide. [Pg.16]

Yui et al. [86-89] have previously reported another type of microdomain-structured polymer, po y(propylene oxide) (PPO)-segmented nylon 610, which has a crystalline-amorphous microdomain structure ... [Pg.27]


See other pages where Propylene Oxide Type is mentioned: [Pg.54]    [Pg.90]    [Pg.166]    [Pg.153]    [Pg.37]    [Pg.73]    [Pg.54]    [Pg.90]    [Pg.166]    [Pg.153]    [Pg.37]    [Pg.73]    [Pg.251]    [Pg.417]    [Pg.516]    [Pg.342]    [Pg.488]    [Pg.168]    [Pg.211]    [Pg.177]    [Pg.186]    [Pg.25]    [Pg.10]    [Pg.366]    [Pg.200]    [Pg.151]    [Pg.281]    [Pg.96]    [Pg.30]    [Pg.21]    [Pg.30]    [Pg.26]    [Pg.136]    [Pg.142]    [Pg.643]    [Pg.188]    [Pg.115]    [Pg.405]   


SEARCH



Oxidant Type

Oxides types

Propylene oxide

Propylene oxide oxidation

© 2024 chempedia.info