Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propane-, sodium

Similarly, the influence of pulp potential on the flotation of marmatite, arsenopyrite and pyrrhotite with 10 mol/L butyl xanthate as a collector in the presence of 120mg/L (1-carbonic sodium-2-acetaic sodium) propanic sodium dithio carbonic sodium (TX4) has been tested. The results are given in Fig. 5.26 and Table 5.2. It can be seen from Fig. 5.26 that at pH=4.5 marmatite has wide floatable potential range from 0.3 V extended to above 0.7 V, at pH = 6.5 the floatable potential range is about 0.3-0.4 V, and at pH =9.2 marmatite is not floatable. Table 5.2 demonstrates that in these conditions, arsenopyrite and... [Pg.132]

Figure 5.29 and Fig. 5.30, respectively, show the adsorption of (1-carbonic sodium-2-acetaic sodium) propanic sodium dithio carbonic sodium (TX4) on... [Pg.134]

It can also be seen from Fig. 5.33 that with the increase of (1-carbonic sodium-2-acetaic sodium) propanic sodium dithio carbonic sodium (TX4), the negative zeta potential of marmatite, pyrrhotite and arsenopyrite increase. The negative zeta potential reach the maximum and remained stable at the concentration of TX2 60 mg/L. The zeta potential in the presence of TX2 increases in the order of arsenopyrite > pyrrhotite > marmatite, which is corresponding to the adsorption order of TX2 on the three minerals. Figure 3.33 also suggests that the adsorption of anionic depressant TX2 on negatively charged marmatite, arsenopyrite and pyrrhotite may be due to the chemical interaction. [Pg.136]

The addition of active methylene compounds (ethyl malonate, ethyl aoeto-acetate, ethyl plienylacetate, nltromethane, acrylonitrile, etc.) to the aP-double bond of a conjugated unsaturated ketone, ester or nitrile In the presence of a basic catalyst (sodium ethoxide, piperidine, diethylamiiie, etc.) is known as the Michael reaction or Michael addition. The reaction may be illustrated by the addition of ethyl malonate to ethyl fumarate in the presence of sodium ethoxide hydrolysis and decarboxylation of the addendum (ethyl propane-1 1 2 3-tetracarboxylate) yields trlcarballylic acid ... [Pg.912]

In the above reaction one molecular proportion of sodium ethoxide is employed this is Michael s original method for conducting the reaction, which is reversible and particularly so under these conditions, and in certain circumstances may lead to apparently abnormal results. With smaller amounts of sodium alkoxide (1/5 mol or so the so-called catal3rtic method) or in the presence of secondary amines, the equilibrium is usually more on the side of the adduct, and good yields of adducts are frequently obtained. An example of the Michael addition of the latter type is to be found in the formation of ethyl propane-1 1 3 3 tetracarboxylate (II) from formaldehyde and ethyl malonate in the presence of diethylamine. Ethyl methylene-malonate (I) is formed intermediately by the simple Knoevenagel reaction and this Is followed by the Michael addition. Acid hydrolysis of (II) gives glutaric acid (III). [Pg.912]

A single organic product was obtained when 1 bromo 3 chloro propane was allowed to react with one molar equivalent of sodium cyanide in aqueous ethanol What was this product j... [Pg.330]

Acrolein (H2C=CHCH=0) reacts with sodium azide (NaNj) in aqueous acetic acid to form a compound C3H5N3O in 71% yield Propanal (CH3CH2CH=0) when subjected to the same reaction conditions is recovered unchanged Suggest a structure for the product formed from acrolein and offer an explanation for the difference in reactivity between acrolein and propanal... [Pg.779]

Acrolein (H2C=CHCH=0) undergoes conjugate addition with sodium azide in aqueous solution to give N3CH2CH2CH=0 Propanal is not an a 3 unsaturated carbonyl compound and cannot undergo conjugate addition... [Pg.1234]

Sodium poly(acrylamido-2-methyl-2-propane sulfonic acid)... [Pg.908]

After epoxidation, propylene oxide, excess propylene, and propane are distilled overhead. Propane is purged from the process propylene is recycled to the epoxidation reactor. The bottoms Hquid is treated with a base, such as sodium hydroxide, to neutralize the acids. Acids in this stream cause dehydration of the 1-phenylethanol to styrene. The styrene readily polymerizes under these conditions (177—179). Neutralization, along with water washing, allows phase separation such that the salts and molybdenum catalyst remain in the aqueous phase (179). Dissolved organics in the aqueous phase ate further recovered by treatment with sulfuric acid and phase separation. The organic phase is then distilled to recover 1-phenylethanol overhead. The heavy bottoms are burned for fuel (180,181). [Pg.140]

Gas-phase oxidation of propylene using oxygen in the presence of a molten nitrate salt such as sodium nitrate, potassium nitrate, or lithium nitrate and a co-catalyst such as sodium hydroxide results in propylene oxide selectivities greater than 50%. The principal by-products are acetaldehyde, carbon monoxide, carbon dioxide, and acrolein (206—207). This same catalyst system oxidizes propane to propylene oxide and a host of other by-products (208). [Pg.141]

Fig. 3. Synthesis of fluoxetine (31). 3-ChIoro-I-phenyl-I-propanol reacts with sodium iodide to afford the corresponding iodo derivative, followed by reaction with methylamine, to form 3-(methyl amin o)-1-phenyl-1-propan 0I. To the alkoxide of this product, generated using sodium hydride, 4-fluorobenzotrifluoride is added to yield after work-up the free base of the racemic fluoxetine (31), thence transformed to the hydrochloride (51)... Fig. 3. Synthesis of fluoxetine (31). 3-ChIoro-I-phenyl-I-propanol reacts with sodium iodide to afford the corresponding iodo derivative, followed by reaction with methylamine, to form 3-(methyl amin o)-1-phenyl-1-propan 0I. To the alkoxide of this product, generated using sodium hydride, 4-fluorobenzotrifluoride is added to yield after work-up the free base of the racemic fluoxetine (31), thence transformed to the hydrochloride (51)...
Methylsuccinic acid has been prepared by the pyrolysis of tartaric acid from 1,2-dibromopropane or allyl halides by the action of potassium cyanide followed by hydrolysis by reduction of itaconic, citraconic, and mesaconic acids by hydrolysis of ketovalerolactonecarboxylic acid by decarboxylation of 1,1,2-propane tricarboxylic acid by oxidation of /3-methylcyclo-hexanone by fusion of gamboge with alkali by hydrog. nation and condensation of sodium lactate over nickel oxide from acetoacetic ester by successive alkylation with a methyl halide and a monohaloacetic ester by hydrolysis of oi-methyl-o -oxalosuccinic ester or a-methyl-a -acetosuccinic ester by action of hot, concentrated potassium hydroxide upon methyl-succinaldehyde dioxime from the ammonium salt of a-methyl-butyric acid by oxidation with. hydrogen peroxide from /9-methyllevulinic acid by oxidation with dilute nitric acid or hypobromite from /J-methyladipic acid and from the decomposition products of glyceric acid and pyruvic acid. The method described above is a modification of that of Higginbotham and Lapworth. ... [Pg.56]

Five hundred milligrams of the diacetate of (dl)-reg.-1-p-nitrophenyl-2-dichloroacetamido-propane-1,3-diol is dissolved in a mixture consisting of 25 cc of acetone and an equal volume of 0.2 N sodium hydroxide solution at 0°C and the mixture allowed to stand for one hour. The reaction mixture is neutralized with hydrochloric acid and evaporated under reduced pressure to dryness. The residue is extracted with several portions of hot ethylene dichloride, the extracts concentrated and then cooled to obtain the crystalline (dl)-reg.-l-p-nitrophenyl-2-dichloroacetamidopropane-1,3-diol MP 171°C. [Pg.300]

To a well stirred suspension of 9 g of sodium phenyl acetate and 2.4 g of magnesium turnings in 25 cc of anhydrous ether, a solution of 9.4 cc of isopropyl bromide in 50 cc of anhydrous ether are added. The mixture is refluxed for one hour (during which time propane is evolved) and then 5 cc of cyclopentanone in 25 cc of anhydrous ether are added dropwise. The mixture is then refluxed for one hour and poured over ice water containing some hydrochloric acid. The ether solution is separated and extracted with 200 cc of 5% sodium hydroxide. The alkaline solution on acidification gives the free acid which is filtered off, dried in a desiccator and recrystallized from a mixture of ethylene dichloride and petroleum ether. [Pg.413]

It is not necessary that the intermediate be separated from the reaction medium in the preparation of the end product. Instead, the reaction mixture, after cooling, is treated with 200 ml of water acidified with 42 ml 10% hydrochloric acid solution, and filtered. To the clear, light yellow filtrate is added dropwise a solution of 9.B g (0.07 mol) 5-nltro-2-furaldehyde in 100 ml ethyl alcohol. An orange solution of the hydrochloride results. The free base is precipitated asyellow plates by making the solution basic with saturated sodium carbonate solution. 14 g of the compound is filtered off by suction, washed with alcohol, and dried. The yield, MP 204°C to 205°C (dec.), is 53% of theoretical based on 3-(N-morpholinyl)-1,2-epoxy-propane. Recrystallization from 95% alcohol (75% recovery) raises the melting point to 206°C (dec.). [Pg.707]

Urea (118 g, 1.96 mols) was added to 192 g (0.98 mol) of 3-(3, 5 -dlmethylphenoxy)-1,2-propane-diol which had previously been heated to 150°C. The reaction mixture was then heated rapidly to 195° to 200°C and maintained at this temperature for 5 hours with constant stirring. The resulting mixture was partitioned between water and ethyl acetate and the ethyl acetate layer was dried over sodium sulfate and concentrated. The residue was distilled in vacuo and the fraction boiling at 220° to 225°C/1.5 mm was collected. Yield, 172 g (79%). The distillate was crystallized from dry ethyl acetate MP, 121.5° to 123°C. [Pg.960]

A mixture of 22 grams of Oi-(p-chlorophenoxy)isobutyric acid, 3.8 grams of 1,3-propane-dioi, 0.5 gram of p-toiuenesulfonic acid and 150 ml of xylene was refluxed. When the theoretically calculated amount of water had been removed, the xylene solution was washed with dilute aqueous sodium bicarbonate and then the xylene was distilled off. The residue was distilled under reduced pressure to give 11 grams (47% yield) of 1,3-propanediol bis[a-(p-chlorophenoxy)isobutyrate] boiling at 197° to 200°C/0.03 mm Hg. [Pg.1376]

The organic fractions are combined and washed successively with N,N-dimethyl-1,3-propane-diamine, dilute hydrochloric acid, saturated sodium bicarbonate solution and saturated sodium chloride solution. The organic fraction is dried over anhydrous magnesium sulfate. The solvent is then evaporated off. Upon trituration of the residue with methanol, a solid crystallizes, 5-(p-toluovl)-1 -methvlpvrrole-2-acetonitrile, which is removed by filtration and purified by recrystallization from benzene. [Pg.1509]

On the other hand, carbonyl condensation reactions require only a catalytic amount of a relatively weak base rather than a full equivalent so that a small amount of enolate ion is generated in the presence of unreacted carbonyl compound. Once a condensation has occurred, the basic catalyst is regenerated. To carry out an aldol reaction on propanal, for instance, we might dissolve the aldehyde in methanol, add 0.05 equivalent of sodium methoxide, and then warm the mixture to give the aldol product. [Pg.881]

In contrast to the 3-methoxy derivative (see Section 3.2.2.5.3.), the 3-isopropoxy-l//-2-benz-azepine 1 on treatment with sodium propan-2-olate undergoes dehydrobromination to the propenyl derivative 2.80... [Pg.273]


See other pages where Propane-, sodium is mentioned: [Pg.131]    [Pg.432]    [Pg.131]    [Pg.432]    [Pg.330]    [Pg.913]    [Pg.93]    [Pg.350]    [Pg.99]    [Pg.73]    [Pg.78]    [Pg.470]    [Pg.27]    [Pg.33]    [Pg.198]    [Pg.128]    [Pg.171]    [Pg.1014]    [Pg.1142]    [Pg.1200]    [Pg.1309]    [Pg.1578]    [Pg.74]    [Pg.589]   
See also in sourсe #XX -- [ Pg.474 ]

See also in sourсe #XX -- [ Pg.474 ]




SEARCH



Sodium 2-acrylamido-2-methyl propane

Sodium 2-acrylamido-2-methyl propane sulfonic acid

© 2024 chempedia.info