Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process synthesis examples

Combinatorial. Combinatorial methods express the synthesis problem as a traditional optimization problem which can only be solved using powerful techniques that have been known for some time. These may use total network cost direcdy as an objective function but do not exploit the special characteristics of heat-exchange networks in obtaining a solution. Much of the early work in heat-exchange network synthesis was based on exhaustive search or combinatorial development of networks. This work has not proven useful because for only a typical ten-process-stream example problem the alternative sets of feasible matches are cal.55 x 10 without stream spHtting. [Pg.523]

Other Industrial Applications. High pressures are used industrially for many other specialized appHcations. Apart from mechanical uses in which hydrauhc pressure is used to supply power or to generate Hquid jets for mining minerals or cutting metal sheets and fabrics, most of these other operations are batch processes. Eor example, metallurgical appHcations include isostatic compaction, hot isostatic compaction (HIP), and the hydrostatic extmsion of metals. Other appHcations such as the hydrothermal synthesis of quartz (see Silica, synthetic quartz crystals), or the synthesis of industrial diamonds involve changing the phase of a substance under pressure. In the case of the synthesis of diamonds, conditions of 6 GPa (870,000 psi) and 1500°C are used (see Carbon, diamond, synthetic). [Pg.76]

Whereas process simulation includes quantitative analysis of a design given the stmcture of the design, process synthesis involves determining the stmcture that will meet the requirements of the design as well as finding the best stmcture for the requirements. For example, if components A, B, C, and D whose relative volatOities were in the order D, C, B, and A were to be separated by distillation for which each column produced a top and a bottom fraction, five schemes of three columns arise as possible stmctures (53) (Fig. 8). [Pg.80]

The task of process synthesis is to evaluate these schemes and select the best. The creative possibilities of design do not stop here. For example, these separations can be carried out by heat integration, by multiple-draw columns, or by use of processes other than distillation many other variations are possible. [Pg.81]

The economics of the various methods that are employed to sequence multicomponent columns have been studied. For example, the separation of three-, four-, and five-component mixtures has been considered (44) where the heuristics (rules of thumb) developed by earlier investigators were examined and an economic analysis of various methods of sequencing the columns was made. The study of sequencing of multicomponent columns is part of a broader field, process synthesis, which attempts to formalize and develop strategies for the optimum overall process (45) (see Separation systems synthesis). [Pg.167]

FIGURE 8.2 Example of a flowsheet generated by computer-aided process synthesis, as would be seen on the screen of a computer terminal. The column on the left side of the figure shows options available in the particular design program being run. Courtesy, Peter Piela, Carnegie-Mel Ion University. [Pg.157]

The anionic method of polymerization is most useful for the synthesis of low molecular weight hydroxy-terminated oligomers and polymers that are to be further processed. For example, the treatment of hydroxy-terminated oligomers with isocyanates has been used to obtain polyester-urethanes (9,20), while triblock copolymers (PCL-PEG-PCL) are prepared by initiating the polymerization of e-caprolactone with the disodium alcoholate from polyethylene glycol (26). [Pg.73]

The most intensive development of the nanoparticle area concerns the synthesis of metal particles for applications in physics or in micro/nano-electronics generally. Besides the use of physical techniques such as atom evaporation, synthetic techniques based on salt reduction or compound precipitation (oxides, sulfides, selenides, etc.) have been developed, and associated, in general, to a kinetic control of the reaction using high temperatures, slow addition of reactants, or use of micelles as nanoreactors [15-20]. Organometallic compounds have also previously been used as material precursors in high temperature decomposition processes, for example in chemical vapor deposition [21]. Metal carbonyls have been widely used as precursors of metals either in the gas phase (OMCVD for the deposition of films or nanoparticles) or in solution for the synthesis after thermal treatment [22], UV irradiation or sonolysis [23,24] of fine powders or metal nanoparticles. [Pg.234]

High pressures are required for many commercial chemical processes. For example, the synthesis of ammonia is carried out at reactor pressures of up to 1000 bar, and high-density polyethylene processes operate up to 1500 bar. [Pg.873]

The overwhelming number of examples dealing with domino processes are those where the different steps are from the same category, such as cationic/ cationic or transition metal/transition metal-catalyzed domino processes, which we term homo domino processes . An example of the former reaction is the synthesis of progesterone (see Scheme 0.3), and for the latter the synthesis of vitamin E (Scheme 0.7). [Pg.8]

Anionic/oxidative reaction sequences have been developed in addition to the domino anionic/reductive processes. For example, with regard to the synthesis of novel diaryl heterocycles as COX-2 inhibitors [500], including rofecoxib (Vioxx) 2-972 [501] (which has recently been withdrawn from the market) or the pyrrolin-2-one derivative 2-973 [494], Pal and coworkers reported on a so-far unique domino aldol condensation/oxidation sequence (Scheme 2.218) [503]. [Pg.197]

Other microwave-assisted parallel processes, for example those involving solid-phase organic synthesis, are discussed in Section 7.1. In the majority of the cases described so far, domestic multimode microwave ovens were used as heating devices, without utilizing specialized reactor equipment. Since reactions in household multimode ovens are notoriously difficult to reproduce due to the lack of temperature and pressure control, pulsed irradiation, uneven electromagnetic field distribution, and the unpredictable formation of hotspots (Section 3.2), in most contemporary published methods dedicated commercially available multimode reactor systems for parallel processing are used. These multivessel rotor systems are described in detail in Section 3.4. [Pg.77]

Related catalytic enantioseiective processes Representative examples of other catalytic asymmetric Mannich additions are depicted in Scheme 6.31. In 1997, Tomioka demonstrated a Li-catalyzed synthesis of functionalized p-lactams that proceeds through a catalytic enantioseiective Mannich reaction (promoted by 103) [95], and a year later Lectka and his team published a series of reports concerning additions of silyl ketene acetals... [Pg.211]

Initial work on the design of structured products has been presented by, for example, Meeuse et al. 2000, Wibowo and Ng, 2001, 2002. In this chapter a real life example of a process redesign project where process synthesis techniques were applied to a structured food product, is presented. First, we position this work in the framework of integrated product and process design. Then we describe how we translated existing process synthesis techniques into a useful methodology for structured products. Then the actual case study is presented. Finally some perspectives are given. [Pg.168]

The example presented in section 6.4 of this chapter showed that process synthesis can be applied to structured food products. Moreover this application is of true value since significant cost savings could be achieved. However, a complete methodology is not yet available. One of the main outstanding questions is how to perform the identified (necessary) tasks in an optimal sequence to obtain the desired product Besides this the success of application depends critically on the availability of domain knowledge about all relevant aspects of the process. Several factors relevant for food processing were not considered in this example ... [Pg.178]

Product-centered Process Synthesis and Developoment Detergents Table 12. Examples of dependence of structural attributes on operating variables. [Pg.263]

Kang and co-workers prepared the (3-halo amide arrangement required for oxazoline formation from allylic alcohols via a two-step process. For example, treatment of the allylic alcohol 122 with trichloroacetonitrile and base followed by activation of the double bond with iodine monochloride, provides 123. Hydrolysis of 123 gave 124 from which cyclization provided the oxazoline 18a used for paclitaxel synthesis (Scheme 8.36). [Pg.381]


See other pages where Process synthesis examples is mentioned: [Pg.351]    [Pg.78]    [Pg.221]    [Pg.298]    [Pg.294]    [Pg.88]    [Pg.36]    [Pg.84]    [Pg.400]    [Pg.2]    [Pg.154]    [Pg.735]    [Pg.287]    [Pg.517]    [Pg.213]    [Pg.125]    [Pg.2]    [Pg.508]    [Pg.168]    [Pg.141]    [Pg.219]    [Pg.203]    [Pg.172]    [Pg.146]    [Pg.1]    [Pg.213]    [Pg.225]    [Pg.131]    [Pg.117]    [Pg.179]    [Pg.453]    [Pg.10]   
See also in sourсe #XX -- [ Pg.213 ]

See also in sourсe #XX -- [ Pg.213 ]

See also in sourсe #XX -- [ Pg.213 ]




SEARCH



Process synthesis

Processing synthesis

Synthesis examples

© 2024 chempedia.info