Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process detectors

The basic SFC system comprises a mobile phase delivery system, an injector (as in HPLC), oven, restrictor, detector and a control/data system. In SFC the mobile phase is supplied to the LC pump where the pressure of the fluid is raised above the critical pressure. Pressure control is the primary variable in SFC. In SFC temperature is also important, but more as a supplementary parameter to pressure programming. Samples are introduced into the fluid stream via an LC injection valve and separated on a column placed in a GC oven thermostatted above the critical temperature of the mobile phase. A postcolumn restrictor ensures that the fluid is maintained above its critical pressure throughout the separation process. Detectors positioned either before or after the postcolumn restrictor monitor analytes eluting from the column. The key feature differentiating SFC from conventional techniques is the use of the significantly elevated pressure at the column outlet. This allows not only to use mobile phases that are either impossible or impractical under conventional LC and GC conditions but also to use more ordinary... [Pg.206]

The Fluorescence Detector and Other Light Processing Detectors... [Pg.199]

Figure 7.35 Flowchart describing the logic of the stochastic process detector (SPD) technique. Figure 7.35 Flowchart describing the logic of the stochastic process detector (SPD) technique.
Roberge, P. R., The Analysis of Spontaneous Electrochemical Noise by the Stochastic Process Detector Method, Corrosion, 50 502 (1994). [Pg.575]

The sensitivity is very good for nickel and vanadium but for these metals for which distribution data would be of great value, the chromatographic process is the lirniting factor, heavy molecules are not eluted from the column with the exception of some porphyrins. This detector can be used to supply H/C and S/C profiles for hydrocarbon cuts with the chromatograph operating in the simulated distillation mode. [Pg.79]

The first of them to determine the LMA quantitatively and the second - the LF qualitatively Of course, limit of sensitivity of the LF channel depends on the rope type and on its state very close because the LF are detected by signal pulses exceeding over a noise level. The level is less for new ropes (especially for the locked coil ropes) than for multi-strand ropes used (especially for the ropes corroded). Even if a skilled and experienced operator interprets a record, this cannot exclude possible errors completely because of the evaluation subjectivity. Moreover it takes a lot of time for the interpretation. Some of flaw detector producers understand the problem and are intended to develop new instruments using data processing by a computer [6]. [Pg.335]

Scalogram applied to single detector signal allows notch localization along the main axis of the tube. However, no circonferential localization is possible so far. Of course, this objection can be bypassed by computing the scalogram simultaneously for the 16 detectors. But then the difficulty lies in the representation process, because of the need of real 3 dimensional representation. [Pg.363]

The first step involved massive testing at ANDREX laboratory to determine the optimal detection process. Two imaging methods were discussed, one using a linear detector array, the other using a high resolution image intensifier. [Pg.587]

Due to the conversion process an absorbed photon give rise to less than one electron generated in the CCD. This phenomenon, also called a "quantum sink" shows that the detector is degrading the S/N ratio of the image. The quality of an image being mainly limited by the quantum noise of the absorbed gamma this effect is very important. [Pg.596]

Software allows to work in the mode of the ordinary ultrasonic flaw detector, to record and look through earlier recorded data files, to measures parameters of ultrasonic signals, to transmit through the buffer of the exchange the arrays for the further processing by different applications of Windows. [Pg.731]

The unit consists of a mechanical scanner (AWS-6), module of scanner and flaw detector control PSP-3. A standard PC is used for processing the UT results. [Pg.790]

Signal processing in mechanical impedance analysis (MIA) pulse flaw detectors by means of cross correlation function (CCF) is described. Calculations are carried out for two types of signals, used in operation with single contact and twin contact probes. It is shown that thi.s processing can increase the sensitivity and signal to noise ratio. [Pg.827]

The modern Russian MIA flaw detectors use pulse version of the method [1-3], which peirnits to produce very portable (0.7 - 1.5 kg) and simple instruments, convenient especially for in-service testing. The objects to be tested are multilayer structures of reinforced plastics, metals and other materials honeycomb panels, antenna fairings, propellers, helicopter rotors and so on. In mentioned instruments amplitude-frequency analog signal processing is used. [Pg.827]

In this report problem of information processing in MIA pulse flaw detectors by means of cross correlation function is considered. Such processing promises to increase the sensitivity and to reduce the noises, mainly the frictional ones. [Pg.827]

Correlative signal processing in MIA pulse flaw detectors is an effective way to increase the sensitivity and signal to noise ratio. Instruments with such processing system should be provided with a device for adjusting and sustaining initial phases of both current and reference pulses. [Pg.832]

The new instrument introduced for inspection of multi-layer structures from polymeric and composite metals and materials in air-space industry and this is acoustic flaw detector AD-64M. The principle of its operation based on impedance and free vibration methods with further spectral processing of the obtained signal. [Pg.911]

The method is based on the international standard ISO 4053/IV. A small amount of the radioactive tracer is injected instantaneously into the flare gas flow through e.g. a valve, representing the only physical interference with the process. Radiation detectors are mounted outside the pipe and the variation of tracer concentration with time is recorded as the tracer moves with the gas stream and passes by the detectors. A control, supply and data registration unit including PC is used for on site data treatment... [Pg.1054]

For this kind of case, a modification of the dilution method is being developed. Instead of using an external fixed-geometry measurement chamber, a suitable part of the process, e.g. a stretch of pipe, is used. A radiation detector is mounted on the outside of the pipe, and a tracer emitting sufficiently hard gamma radiation is used. As sufficient mixing can be achieved by injecting upstream the separator the radiation level found will be strictly proportional to the concentration and thus inversely proportional to the true flow rate. [Pg.1056]

Figure Bl.10.2. Schematic diagram of a counting experiment. The detector intercepts signals from the source. The output of the detector is amplified by a preamplifier and then shaped and amplified friitlier by an amplifier. The discriminator has variable lower and upper level tliresholds. If a signal from the amplifier exceeds tlie lower tlireshold while remaming below the upper tlireshold, a pulse is produced that can be registered by a preprogrammed counter. The contents of the counter can be periodically transferred to an online storage device for fiirther processing and analysis. The pulse shapes produced by each of the devices are shown schematically above tlieni. Figure Bl.10.2. Schematic diagram of a counting experiment. The detector intercepts signals from the source. The output of the detector is amplified by a preamplifier and then shaped and amplified friitlier by an amplifier. The discriminator has variable lower and upper level tliresholds. If a signal from the amplifier exceeds tlie lower tlireshold while remaming below the upper tlireshold, a pulse is produced that can be registered by a preprogrammed counter. The contents of the counter can be periodically transferred to an online storage device for fiirther processing and analysis. The pulse shapes produced by each of the devices are shown schematically above tlieni.
Let the rate of the event under study be R. It will be proportional to the cross section for the process under study, a, the incident electron current, Iq, the target density, n, the length of the target viewed by the detectors,, the solid angles subtended by the detectors, Aoi and A012 the efficiency of the detectors, and... [Pg.1429]


See other pages where Process detectors is mentioned: [Pg.503]    [Pg.399]    [Pg.411]    [Pg.44]    [Pg.550]    [Pg.503]    [Pg.399]    [Pg.411]    [Pg.44]    [Pg.550]    [Pg.76]    [Pg.145]    [Pg.208]    [Pg.210]    [Pg.364]    [Pg.401]    [Pg.460]    [Pg.477]    [Pg.478]    [Pg.570]    [Pg.580]    [Pg.598]    [Pg.655]    [Pg.790]    [Pg.827]    [Pg.1063]    [Pg.1122]    [Pg.1165]    [Pg.1236]    [Pg.1308]    [Pg.1313]    [Pg.1335]    [Pg.1420]    [Pg.1424]    [Pg.1433]    [Pg.1561]   
See also in sourсe #XX -- [ Pg.2 , Pg.325 ]




SEARCH



Data processing detectors

Detector signal processing

Ion Detectors and Data Processing in MALDI-TOF Analyzers

Process thermal conductivity detector

© 2024 chempedia.info