Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentiometric titration, acid-base complexation

Potcntiomctric Titrations In Chapter 9 we noted that one method for determining the equivalence point of an acid-base titration is to follow the change in pH with a pH electrode. The potentiometric determination of equivalence points is feasible for acid-base, complexation, redox, and precipitation titrations, as well as for titrations in aqueous and nonaqueous solvents. Acid-base, complexation, and precipitation potentiometric titrations are usually monitored with an ion-selective electrode that is selective for the analyte, although an electrode that is selective for the titrant or a reaction product also can be used. A redox electrode, such as a Pt wire, and a reference electrode are used for potentiometric redox titrations. More details about potentiometric titrations are found in Chapter 9. [Pg.494]

This experiment describes the use of coated graphite electrodes for the potentiometric monitoring of precipitation, acid-base, complexation, and redox titrations. [Pg.534]

Potentiometric titration and assumed 1 1 metal/fulvate mole ratio in the complex. "Potentiometric and acid-base conductimetric titrations and assumed 1 1 metal/fulvate mole ratio in the complex. [Pg.427]

The holistic thermodynamic approach based on material (charge, concentration and electron) balances is a firm and valuable tool for a choice of the best a priori conditions of chemical analyses performed in electrolytic systems. Such an approach has been already presented in a series of papers issued in recent years, see [1-4] and references cited therein. In this communication, the approach will be exemplified with electrolytic systems, with special emphasis put on the complex systems where all particular types (acid-base, redox, complexation and precipitation) of chemical equilibria occur in parallel and/or sequentially. All attainable physicochemical knowledge can be involved in calculations and none simplifying assumptions are needed. All analytical prescriptions can be followed. The approach enables all possible (from thermodynamic viewpoint) reactions to be included and all effects resulting from activation barrier(s) and incomplete set of equilibrium data presumed can be tested. The problems involved are presented on some examples of analytical systems considered lately, concerning potentiometric titrations in complex titrand + titrant systems. All calculations were done with use of iterative computer programs MATLAB and DELPHI. [Pg.28]

In acid-base titrations the end point is generally detected by a pH-sensitive indicator. In the EDTA titration a metal ion-sensitive indicator (abbreviated, to metal indicator or metal-ion indicator) is often employed to detect changes of pM. Such indicators (which contain types of chelate groupings and generally possess resonance systems typical of dyestuffs) form complexes with specific metal ions, which differ in colour from the free indicator and produce a sudden colour change at the equivalence point. The end point of the titration can also be evaluated by other methods including potentiometric, amperometric, and spectrophotometric techniques. [Pg.311]

In fact, any type of titration can be carried out potentiometrically provided that an indicator electrode is applied whose potential changes markedly at the equivalence point. As the potential is a selective property of both reactants (titrand and titrant), notwithstanding an appreciable influence by the titration medium [aqueous or non-aqueous, with or without an ISA (ionic strength adjuster) or pH buffer, etc.] on that property, potentiometric titration is far more important than conductometric titration. Moreover, the potentiometric method has greater applicability because it is used not only for acid-base, precipitation, complex-formation and displacement titrations, but also for redox titrations. [Pg.99]

In the practice of potentiometric titration there are two aspects to be dealt with first the shape of the titration curve, i.e., its qualitative aspect, and second the titration end-point, i.e., its quantitative aspect. In relation to these aspects, an answer should also be given to the questions of analogy and/or mutual differences between the potentiometric curves of the acid-base, precipitation, complex-formation and redox reactions during titration. Excellent guidance is given by the Nernst equation, while the acid-base titration may serve as a basic model. Further, for convenience we start from the following fairly approximate assumptions (1) as titrations usually take place in dilute (0.1 M) solutions we use ion concentrations in the Nernst equation, etc., instead of ion activities and (2) during titration the volume of the reaction solution is considered to remain constant. [Pg.99]

All studied complexes in aqueous solution are present as diaqua [Mn(L)(H20)2] species, whereas two chloro ligands are replaced by water molecules in axial positions (35,36). For studying the water-exchange processes it was necessary first to determine the acid-base properties of the complexes by potentiometric titration in order to define the pH range where the diaqua form of the studied complexes is the predominant one. The potentiometric titrations of... [Pg.66]

Potentiometric titrations are usually more accurate than simple acid-base titrations since we are not looking here for a visual change in colour or intensity. Furthermore, the potentiometric approach means that we can follow a titration without having to add an additional chemical to the analyte solution - always a good idea if complexation is a possible side reaction. [Pg.103]

Potentiometric titration can determine the end point more accurately than the color indicators. Thus, the quantitative consumption of a titrant in an acid-base neutralization, oxidation-reduction reaction, or complex formation reaction can be determined precisely and very accurately by potentiometric titration. The titration involves the addition of large increments of the titrant to a measured volume of the sample at the initial phase and, thereafter, adding smaller and smaller increments as the end point approaches. The cell potential is recorded... [Pg.77]

Oxygen Donors. The formation and stability constants oi complexes between Pt (Pd, Rh, Ir, Os, Ru) and o-coumaric acid have been determined by pH titration.31 The results indicate that a 1 2 complex is formed with Pt. Acid-base properties of aquo-complexes formed from [Pt(X)2(OH)2(NH3)(MeNH2)] (X = Cl, Br or N02) in aqueous solutions have been examined using potentiometric titration experiments.186 The Ka of co-ordinated water was lower for (X)2 = (H20)2 than for (X)2 = (H20) (OH-). [Pg.419]

In the use of potentiometry for the evaluation of stability constants for complex ions, the expressions can become extremely complicated if multiequilibria are present. For a simple one-to-one complex a direct potentiometric titration curve again provides die most satisfactory route to an accurate evaluation of the constant. The curve looks similar to that for an acid-base titration, and the appropriate point to pick is the half-equivalence point. If the complex is extremely stable, then die amount of free metal ion at this point on die dtration curve (ligand titrated with metal ion) is sufficiently low that it can be disregarded. If not, it must be handled in a way similar to the first point on the titration curve for phosphoric acid. Assuming that it is a stable complex, at the first half-equivalence point the concentration of complexed metal ion will be equivalent to that of the free ligand. The potential will give a direct measure of the free metal ion and allow the stability constant for the complex to be evaluated at the half-equivalence point ... [Pg.44]

Other examples of potentiometric titrations include acid-base titrations, in which an indicator electrode provides a response to hydronium ions, such as the glass electrode, quinhydione electrode, or antimony electrode. In precipitation and complexation titrations the indicator electrode should provide the response to the active species in the solution. Thus, during the titration of chloride ions by silver nitrate, a silver electrode is an effective indicator electrode. [Pg.141]

Table 1 tabulates literature values for acidity constants of seven amine-Ptn complexes with notations on the temperature, ionic strength, total Ptn concentration, method employed, conditions and other remarks, and the reference number. At least six factors enter into comparing determinations of a single complex. First is the purity of the complex under investigation. Because they rely on chemical shifts of an individual species, NMR methods are less dependent on purity than potentiometric titrations, which are interpreted on the basis of equivalents of added base. Rarely is the raw titration data published, but in one case it is evident from a plot of the data that the titration curve reveals up to about 10% impurity [7], Without knowing whether the impurities are acidic, basic, inert, or even forming during... [Pg.185]

Any titration involves the progressive change of the activities (or concentrations) of the titrated and titrating species and, in principle, can be done potentiometrically. However, for an accurate determination it is necessary that there is a fairly rapid variation in equilibrium potential in the region of the equivalence point. Useful applications are redox, complexation, precipitation, acid-base titrations, etc. From the titration curve it is possible to calculate values of the formal potentials of the titrated and titrating species, as explained below. [Pg.290]

Soil or soil-mineral titrations are often used to establish surface acidity composition and acid-base behavior. Soil or soil-mineral surfaces are complex in nature owing to their large variation in functional group content and behavior. For example, the data in Figure 3.33 show that soil surface acidity is made up mostly by A1 and a smaller quantity of H+. The titration behavior of such soil would depend on amount of A1 present, affinity by which this A1 is adsorbed by the surface, degree of surface A1 hydroxylation, and finally the pKg values of the surface-associated H+. Commonly, two types of titrations are employed to evaluate soil or soil-mineral surfaces (1) conductimetric titration and (2) potentiometric titration. [Pg.154]

Potentiometric Titration Potentiometry may be used to follow a titration and to determine its end point. The principles have already been discussed in connection with acid-base or complex formation titrations where pH or pMe is used as a variable. Any potentiometric electrode may serve as an indicator electrode, which indicates either a reactant or a reaction product. Usually the measured potential will vary during the course of the reaction and the end point will be characterized by a jump in the curve of voltage versus amount of reactant added. [Pg.503]

The second group of values came from studies where it was assumed that polymerization reactions occurred, such as the formation of H5As206 (aq>, in addition to the deprotonation reaction. For chemical and mathematical reasons, the dissociation constant calculated from a set of measurements becomes smaller as one introduces polymeric anions into the model. The differences of the models chosen, at first appearance, could serve to explain the differences of the equilibrium constants given in the previous table. Unfortunately, the situation, from the perspective of data evaluation, is more complex. In principle, there should be a sufficient dilution of arsenious acid for which one would not expect the formation of a significant proportion of species like HsAsaOe caq) upon addition of base. For such a condition, the equilibrium constant determined assuming that only the monomer exists, should approach that determined for the multi-species model. Britton and Jackson (1934) performed potentiometric titration at two concentrations of arsenious acid (0.0170 and 0.0914 molar) and obtained essentially the same... [Pg.17]

The stoichiometry of the proton in Eqs. (10.7) and (10.8) (denoted by j) is a collective term that represents three possible configurations for the M Hy cit +- - (6Z ) complex. The value of j is 1 when Hc iP occurs in the complex, as in MHcif (6Z ). In this instance, a single carboxyl and the hydroxyl are protonated on the citrate molecule. Such complexes are significant only when solution pH values are less than 4. More commonly, j is zero or negative, the latter representing either the occurrence of H iciP in the complex (all citrate moieties ionized) [as in MH icit (ag)], or the occurrence of H ciP and a metal hydrolysis product in the complex [as in MOH(H icit)2 (ag)]. Chemical models derived from potentiometric acid-base titration studies cannot distinguish between the two potential proton sources (citrate hydroxyl or metal-bound water), as titrations... [Pg.383]

The technique is generally unaffected by the state (ionic, imdissociated, sometimes complexed) of the analyte to be titrated. For example, the direct potentiometric determination of pH in a solution of a weak acid reports only the hydrogen ion concentration. Since the major portion of the acid is present in the undissociated form, direct potentiometry can not provide data yielding the total acid concentration. Potentiometric titration involves titrating the acid solution with a standard base, determining the equivalence point volume of standard base solution used, and calculating the total weak acid concentration from the stoichiometric data. [Pg.286]


See other pages where Potentiometric titration, acid-base complexation is mentioned: [Pg.876]    [Pg.230]    [Pg.84]    [Pg.78]    [Pg.225]    [Pg.12]    [Pg.154]    [Pg.552]    [Pg.25]    [Pg.58]    [Pg.78]    [Pg.150]    [Pg.152]    [Pg.194]    [Pg.502]    [Pg.840]    [Pg.497]    [Pg.497]    [Pg.28]    [Pg.77]    [Pg.869]    [Pg.403]    [Pg.12]    [Pg.85]    [Pg.213]    [Pg.206]    [Pg.178]    [Pg.47]    [Pg.53]    [Pg.205]   
See also in sourсe #XX -- [ Pg.44 ]




SEARCH



Acid-base complexes

Acid-base titrations

Acidity, titration

Acids acid-base titrations

Acids titrations

Bases acid-base titrations

Bases titrations

Complexation titrations

Potentiometric

Potentiometric titration, acid-base

Potentiometric titrations

Titratable acid

Titratable acidity

Titration-complexes

© 2024 chempedia.info