Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potentiometry potentiometric titrations

Selective-ion potentiometry Potentiometric titration Argentometric Ion chromatography Nuclear magnetic resonance Electron paramagnetic resonance... [Pg.137]

The measurement of pK for bases as weak as thiazoles can be undertaken in two ways by potentiometric titration and by absorption spectrophotometry. In the cases of thiazoles, the second method has been used (140, 148-150). A certain number of anomalies in the results obtained by potentiometry in aqueous medium using Henderson s classical equation directly have led to the development of an indirect method of treatment of the experimental results, while keeping the Henderson equation (144). [Pg.355]

Perhaps the most precise, reHable, accurate, convenient, selective, inexpensive, and commercially successful electroanalytical techniques are the passive techniques, which include only potentiometry and use of ion-selective electrodes, either direcdy or in potentiometric titrations. Whereas these techniques receive only cursory or no treatment in electrochemistry textbooks, the subject is regularly reviewed and treated (19—22). Reference 22 is especially recommended for novices in the field. Additionally, there is a journal, Ion-Selective Electrode Reviews, devoted solely to the use of ion-selective electrodes. [Pg.55]

CrP" -selective and Ni " -selective electrodes have been used to detenuine the copper and nickel ions in aqueous solutions, both by direct potentiometry and by potentiometric titration with EDTA. They have also been used for detenuining the CiT and Ni " ions in indushial waters by direct potentiomehy. [Pg.151]

In the present chapter consideration is given to various types of indicator and reference electrodes, to the procedures and instrumentation for measuring cell e.m.f., to some selected examples of determinations carried out by direct potentiometry, and to some typical examples of potentiometric titrations. [Pg.550]

Potentiometric titrations - continued EDTA titrations, 586 neutralisation reactions, 578, 580 non-aqueous titrations, 589, (T) 590 oxidation-reduction reactions, 579, 581, 584 precipitation reactions, 579, 582 Potentiometry 548 direct, 548, 567 fluoride, D. of, 570 Potentiostats 510, 607 Precipitants organic, 437 Precipitate ageing of, 423 digestion of, 423... [Pg.872]

The main electroanalytical techniques are electrogravimetry, potentiometry (including potentiometric titrations), conductometry, voltammetry/polarography, coulometry and electrochemical detection. Some electroanalytical techniques have become very widely accepted others, such as polarography/voltammetry, less so. Table 8.74 compares the main electroanalytical methods. [Pg.666]

One of the most fruitful uses of potentiometry in analytical chemistry is its application to titrimetry. Prior to this application, most titrations were carried out using colour-change indicators to signal the titration endpoint. A potentiometric titration (or indirect potentiometry) involves measurement of the potential of a suitable indicator electrode as a function of titrant volume. The information provided by a potentiometric titration is not the same as that obtained from a direct potentiometric measurement. As pointed out by Dick [473], there are advantages to potentiometric titration over direct potentiometry, despite the fact that the two techniques very often use the same type of electrodes. Potentiometric titrations provide data that are more reliable than data from titrations that use chemical indicators, but potentiometric titrations are more time-consuming. [Pg.668]

E.P. Serjeant, Potentiometry and Potentiometric Titrations, John Wiley Sons, Inc., New York, NY (1984). [Pg.689]

In electroanalysis, the techniques are pre-eminently based on processes that take place when two separate poles, the so-called electrodes, are in contact with a liquid electrolyte, which usually is a solution of the substance to be analysed, the analyte. By means of electrometry, i.e., by measuring the electrochemical phenomena occurring or intentionally generated, one obtains signals from which chemical-analytical data can be derived through calibration. Often electrometry (e.g., potentiometry) is applied in order to follow a reaction that goes to completion (e.g., a titration), which essentially represents a stoichiometric method, so that the electrometry merely acts as an end-point indicator of the reaction (which means a potentiometric titration). The electrochemical phenomena in electroanalysis, whether they take place in the solution or at the electrodes, are often complicated and their explanation requires a systematic treatment of electroanalysis. [Pg.20]

This method is primarily concerned with the phenomena that occur at electrode surfaces (electrodics) in a solution from which, as an absolute method, through previous calibration a component concentration can be derived. If desirable the technique can be used to follow the progress of a chemical reaction, e.g., in kinetic analysis. Mostly, however, potentiometry is applied to reactions that go to completion (e.g. a titration) merely in order to indicate the end-point (a potentiometric titration in this instance) and so do not need calibration. The overwhelming importance of potentiometry in general and of potentiometric titration in particular is due to the selectivity of its indication, the simplicity of the technique and the ample choice of electrodes. [Pg.42]

In potentiometric titration the reaction is pursued by means of potentiometry interest is sometimes taken in the complete titration curve, but mostly in the part around the equivalence point in order to establish the titration end-point. [Pg.99]

With a low constant current -1 (see Fig. 3.71) one obtains the same type of curve but its position is slightly higher and the potential falls just beyond the equivalence point (see Fig. 3.72, anodic curve -1). In order to minimize the aforementioned deviations from the equivalence point, I should be taken as low as possible. Now, it will be clear that the zero current line (abscissa) in Fig. 3.71 yields the well known non-faradaic potentiometric titration curve (B B in Fig. 2.22) with the correct equivalence point at 1.107 V this means that, when two electroactive redox systems are involved, there is no real need for constant-current potentiometry, whereas this technique becomes of major advantage... [Pg.212]

For the different values of pAHX and pA H+ see the summary Table 4.5 later of pKa data in various solvents of low e in comparison with pAa(H20). The mutual agreement of pffHX values obtained by spectrophotometry, DVP, potentiometry and titration was reasonably good the typical form of the curves for titration of the dinitrophenols with TMG can be explained by homoconjugation and more especially by its influence on the potentiometric measurements, calculated on the basis of simple dissociation hence the major discrepancies in the spectrophotometric and potentiometric pK values. In order to... [Pg.283]

Vol. 66 Solid Phase Biochemistry Analytical and Synthetic Aspects. Edited by William H. Scouten Vol. 67 An Introduction to Photoelectron Spectroscopy. By Pradip K. Ghosh Vol. 68 Room Temperature Phosphorimetry for Chemical Analysis. By Tuan Vo-Dinh Vol. 69 Potentiometry and Potentiometric Titrations. By E. P. Serjeant Vol. 70 Design and Application of Process Analyzer Systems. By Paul E. Mix Vol. 71 Analysis of Organic and Biological Surfaces. Edited by Patrick Echlin Vol. 72 Small Bore Liquid Chromatography Columns Their Properties and Uses. Edited by Raymond P.W. Scott... [Pg.652]

Electrode Systems. Direct Potentiometric Measurements. Potentiometric Titrations. Null -point Potentiometry. Applications of Potentiometry. [Pg.7]

As mentioned previously, electroanalytical techniques that measure or monitor electrode potential utilize the galvanic cell concept and come under the general heading of potentiometry. Examples include pH electrodes, ion-selective electrodes, and potentiometric titrations, each of which will be described in this section. In these techniques, a pair of electrodes are immersed, the potential (voltage) of one of the electrodes is measured relative to the other, and the concentration of an analyte in the solution into which the electrodes are dipped is determined. One of the immersed electrodes is called the indicator electrode and the other is called the reference electrode. Often, these two electrodes are housed together in one probe. Such a probe is called a combination electrode. [Pg.399]

Keeping in view the above serious anomalies commonly encountered with direct potentiometry, such as an element of uncertainty triggered by liquid junction potential (E.) and high degree of sensitivity required to measure electrode potential (E), it promptly gave birth to the phenomenon of potentiometric titrations,... [Pg.234]

When a validated hit is selected as a promising lead compound, its physicochemical profile must be studied in detail. Sophisticated in silica approaches such as 3D lipophilicity predictions coupled with extensive conformational analysis [49, 50,135,146] and molecular field interactions (MIFs) [147-150] could be helpful to better interpret the detailed experimental investigations of their ionization constants by capillary electrophoresis or potentiometric titrations [151, 152] and their lipophilicity profiles by potentiometry [153]. However, these complex approaches cannot be performed easily on large number of compounds and are generally applied only on the most promising compounds. [Pg.107]

Potentiometry and potentiometric titrations are widely used in studying various types of reactions and equilibria in non-aqueous systems (Sections 6.3.1-6.3.4). They also provide a convenient method of solvent characterization (Section 6.3.5). Moreover, if the electrode potentials in different solvents can accurately be compared, potentiometry is a powerful method of studying ion solvation (Section 6.3.6). [Pg.183]

The fluoride ion selective electrode is the most popular means of fluoride ion determination after sample destruction by any method but it does have limitations. It can be used either directly to measure the fluoride potential6 or as an end-point detector in a potentiometric titration with a lanthanum(l II) reagent as titrant.4,7 Problems can be experienced with potential drift in direct potentiometry, especially at low fluoride ion concentrations. Titration methods often yield sluggish end points unless water miscible solvents are used to decrease solubilities and increase potentia 1 breaks and sulfate and phosphate can interfere. End-point determination can be facilitated by using a computerized Gran plotting procedure.4... [Pg.28]

Table 5), and several are now being used, or are potentially useful, for measuring key ocean elements. The most common use of direct potentiometry (as compared with potentiometric titrations) is for measurement of pH (Culberson, 1981). Most other cation electrodes are subject to some degree of interference from other major ions. Electrodes for sodium, potassium, calcium, and magnesium have been used successfully. Copper, cadmium, and lead electrodes in seawater have been tested, with variable success. Anion-selective electrodes for chloride, bromide, fluoride, sulfate, sulfide, and silver ions have also been tested but have not yet found wide application. [Pg.50]

Among the various possibilities that offer the EC detection, ampe-rometry and conductimetry are, in this order, the most common. Although potentiometry results are a very interesting technique in many fields of Analytical Chemistry, it has not found enough echo in the microchip technology. Its incursion in microchips is related with the employment of ion-selective electrodes for Ba2+ determination [55] or potentiometric titration of iron ferrocyanide [56], but it has not yet been associated with CE microchips. [Pg.835]


See other pages where Potentiometry potentiometric titrations is mentioned: [Pg.285]    [Pg.357]    [Pg.285]    [Pg.357]    [Pg.55]    [Pg.554]    [Pg.573]    [Pg.140]    [Pg.446]    [Pg.669]    [Pg.1207]    [Pg.366]    [Pg.116]    [Pg.149]    [Pg.190]    [Pg.773]    [Pg.55]   


SEARCH



Potentiometric

Potentiometric titrations

Potentiometry

Potentiometry titrations

© 2024 chempedia.info