Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pore catalyst, definition

Figure 10 shows that Tj is a unique function of the Thiele modulus. When the modulus ( ) is small (- SdSl), the effectiveness factor is unity, which means that there is no effect of mass transport on the rate of the catalytic reaction. When ( ) is greater than about 1, the effectiveness factor is less than unity and the reaction rate is influenced by mass transport in the pores. When the modulus is large (- 10), the effectiveness factor is inversely proportional to the modulus, and the reaction rate (eq. 19) is proportional to k ( ), which, from the definition of ( ), implies that the rate and the observed reaction rate constant are proportional to (1 /R)(f9This result shows that both the rate constant, ie, a measure of the intrinsic activity of the catalyst, and the effective diffusion coefficient, ie, a measure of the resistance to transport of the reactant offered by the pore stmcture, influence the rate. It is not appropriate to say that the reaction is diffusion controlled it depends on both the diffusion and the chemical kinetics. In contrast, as shown by equation 3, a reaction in solution can be diffusion controlled, depending on D but not on k. [Pg.172]

As surface area and pore structure are properties of key importance for any catalyst or support material, we will first describe how these properties can be measured. First, it is useful to draw a clear borderline between roughness and porosity. If most features on a surface are deeper than they are wide, then we call the surface porous (Fig. 5.16). Although it is convenient to think about pores in terms of hollow cylinders, one should realize that pores may have all kinds of shapes. The pore system of zeolites consists of microporous channels and cages, whereas the pores of a silica gel support are formed by the interstices between spheres. Alumina and carbon black, on the other hand, have platelet structures, resulting in slit-shaped pores. All support materials may contain micro, meso and macropores (see text box for definitions). [Pg.182]

It ought to be verified, however, in all cases, that the experimental Q-9 curve truly represents the distribution of surface sites with respect to a given adsorbate under specified conditions. The definition of differential heats of adsorption [Eq. (39) 3 includes, in particular, the condition that the surface area of the adsorbent A remain unchanged during the experiment. The whole expanse of the catalyst surface must therefore be accessible to the gas molecules during the adsorption of all successive doses. The adsorption of the gas should not be limited by diffusion, either within the adsorbent layer (external diffusion) or in the pores (internal diffusion). Diffusion, in either case, restricts the accessibility to the adsorbent surface. [Pg.242]

Pores are found in many solids and the term porosity is often used quite arbitrarily to describe many different properties of such materials. Occasionally, it is used to indicate the mere presence of pores in a material, sometimes as a measure for the size of the pores, and often as a measure for the amount of pores present in a material. The latter is closest to its physical definition. The porosity of a material is defined as the ratio between the pore volume of a particle and its total volume (pore volume + volume of solid) [1]. A certain porosity is a common feature of most heterogeneous catalysts. The pores are either formed by voids between small aggregated particles (textural porosity) or they are intrinsic structural features of the materials (structural porosity). According to the IUPAC notation, porous materials are classified with respect to their sizes into three groups microporous, mesoporous, and macroporous materials [2], Microporous materials have pores with diameters < 2 nm, mesoporous materials have pore diameters between 2 and 50 nm, and macroporous materials have pore diameters > 50 nm. Nowadays, some authors use the term nanoporosity which, however, has no clear definition but is typically used in combination with nanotechnology and nanochemistry for materials with pore sizes in the nanometer range, i.e., 0.1 to 100 nm. Nanoporous could thus mean everything from microporous to macroporous. [Pg.96]

Although, the true density of solid phase p=m/Vp (e.g., g/cm3) is defined by an atomic-molecular structure (/ ), it has become fundamental to the definition of many texture parameters. In the case of porous solids, the volume of solid phase Vp is equal to the volume of all nonporous components (particles, fibers, etc.) of a PS. That is, Vp excludes all pores that may be present in the particles and the interparticular space. The PS shown in Figure 9.17a is formed from nonporous particles that form porous aggregates, which, in turn, form a macroscopic granule of a catalyst. In this case, the volume Vp is equal to the total volume of all nonporous primary particles, and the free volume between and inside the aggregates (secondary particles) is not included. [Pg.283]

Internal resistance relates to the diffusion of the molecules from the external surface of the catalyst into the pore volume where the major part of the catalyst s surface is found. To determine the diffusion coefficients inside a porous space is not an easy task since they depend not only on the molecules diffusivity but also on the pore shape. In addition, surface diffusion should be taken into account. Data on protein migration obtained by confocal microscopy [8] definitely demonstrate that surface migration of the molecules is possible, even though the mechanism is not yet well understood. All the above-mentioned effects are combined in a definition of the so-called effective diffusivity [7]. [Pg.170]

Unsteady state diffusion in monodisperse porous solids using a Wicke-Kallenbach cell have shown that non-equimolal diffusion fluxes can induce total pressure gradients which require a non-isobaric model to interpret the data. The values obtained from this analysis are then suitable for use in predicting effectiveness factors. There is evidence that adsorption of the non-tracer component can have a considerable influence on the diffusional flux of the tracer and hence on the estimation of the effective diffusion coefficient. For the simple porous structures used in these tests, it is shown that a consistent definition of the effective diffusion coefficient can be obtained which applies to both the steady and unsteady state and so can be used as a basis of examining the more complex bimodal pore size distributions found in many catalysts. [Pg.473]

An important preliminary remark must be made. In contrast to non-zeolite catalysts the heavy secondary products responsible for zeolite deactivation are not always polyaromatics. Indeed the pores of certain zeolites are too narrow to allow the formation of potyaromatic compounds and even to accommodate them [1]. This has caused some confusion in the relevant literature, certain authors using the word coke only for the polyaromatic compounds and others for all the secondary products, polyaromatic and non polyaromatic retained in or on the zeolite. Although the designation of non polyaromatic and sometimes simple molecules as "coke may appear surprising it is this latter definition that will be used here. Indeed the non polyaromatic molecules contributing with the polyaromatic ones to deactivation and often through similar modes we considered preferable to use the same term (coke) for all the secondary products responsible for zeolite deactivation [8]. [Pg.54]

Catalysts of wood pyrolysis are used to increase the yield of charcoal and to obtain a charcoal with modified properties or to produce definite valuable volatile products. The substances promoting condensation reactions are employed if high jields of charcoal are desired (4, 5, 7). Some catalysts increase the apparent density of charcoal, the pore dimensions and their adsorbency nature. Of all silvichemicals charcoal is currenUy the most in demand Commercial interest is focused on deciduous wood charcoal or charcoal briquettes. [Pg.1643]

Apparently there is not a clear relationship between the catalyst nature and the coke poisoning susceptibility but the tendency to retain and withstand higher metal poisoning of some catalysts over others is clear. Catalysts with pore size near to 120 A present the maximum metals retention for this type of feeds, but a better definition of the texture needs more information and is the reason of further research at ICP. [Pg.357]

In our efforts to verify deductively our modified capillary condensation theory we found two commercial porous bodies in which spherical elementary particles are arranged in a definite pattern. Therefore, if the radius of the elementary particles and their packing are given, a whole model of pore structure is clearly available for these specimens. By using these specimens as a catalyst or a catalyst carrier a series of investigations was carried out on catalytic activity in relation to the pore structure. [Pg.793]

Two types of mass- transfer can be distinguished for catalysis with heterogeneous catalyst particles. External mass transfer refers to molecular transport between the bulk reaction mixture and the surface of the enzyme particle through a boundary layer. Internal mass transfer is the molecular transport inside the solid enzyme phase. Internal mass transfer occurs within the pores of the catalyst particle to and from the particle surface. Figure 4.9-4 illustrates the definitions of external and internal mass transfer. [Pg.434]

If the catalyst particles are not completely wetted by the liquid phase and the pores consequently not completely filled with liquid phase (static holdup gives some indication of whether this is the case or not), the situation is considerably more complex. In addition to being a function of the Thiele modulus, the catalytic effectiveness will now depend on the fraction of external wetting, rjcs, and the fraction of pore volume filled with liquid, rji. Dudokovic [M.P. Dudokovic, Amer. Inst. Chem. Eng. Jl., 23, 940 (1977)] proposed a reasonable approach that accounts for all three factors. If the reaction proceeds only on the catalyst surface effectively wetted by the liquid phase and components of the reaction mixture are nonvolatile, then one can in principle modify the definition of the Thiele modulus to... [Pg.645]


See other pages where Pore catalyst, definition is mentioned: [Pg.2789]    [Pg.164]    [Pg.369]    [Pg.260]    [Pg.392]    [Pg.162]    [Pg.381]    [Pg.424]    [Pg.226]    [Pg.312]    [Pg.369]    [Pg.13]    [Pg.325]    [Pg.38]    [Pg.74]    [Pg.5661]    [Pg.221]    [Pg.191]    [Pg.172]    [Pg.20]    [Pg.481]    [Pg.332]    [Pg.136]    [Pg.30]    [Pg.2]    [Pg.374]    [Pg.794]    [Pg.2789]    [Pg.5660]    [Pg.512]    [Pg.646]    [Pg.58]    [Pg.554]    [Pg.754]    [Pg.905]   
See also in sourсe #XX -- [ Pg.251 ]




SEARCH



Catalyst definition

Definition pores

© 2024 chempedia.info