Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyvinyl groups

Polymers can be classified as addition polymers and condensation polymers. Addition polymers are formed by iiitermolecular reactions of the monomeric units without the elimination of atoms or groups. An example is vinyl chloride, which can be made to combine with itself to yield polyvinyl chloride ... [Pg.1014]

Four other groups of synthetic adhesives find uses in secondary processing, ie, overlaying, assembly gluing, etc, and in furniture and cabinet manufacture. Poly(vinyl acetate) (PVA) adhesives are widely used in appHcation of veneers and other overlays to panel substrates and in some unit-assembly operations. PVA adhesives are an emulsion of polyvinyl acetate in water and cure by loss of water. The PVA adhesives are somewhat... [Pg.378]

The simplest linear-chain polymer is polyethylene (Fig. 22.3a). By replacing one H atom of the monomer by a side-group or radical R (sausages on Fig. 22.3b, c, d) we obtain the vinyl group of polymers R = Cl gives polyvinyl chloride R = CIT3 gives... [Pg.230]

Group of plastics composed of resins derived from the hydrolysis of polyvinyl esters or copolymers of vinyl esters. [Pg.141]

Group of plastics composed of resins derived from vinyl monomers, excluding those that are covered by other classifications (i.e., acrylics and styrene plastics). Examples include PVC, polyvinyl acetate, polyvinyl butyral, and various... [Pg.141]

A characteristic of the group (a) of resins is that they air-dry solely by solvent evaporation and remain permanently solvent soluble. This fact, combined with the need to use strong solvents, makes brush application very difficult, but sprayed coats can be applied at intervals of one hour. A full vinyl system such as (o) possesses excellent chemical and water resistance. Many members of group (o) have very poor adhesion to metal, and have therefore been exploited as strip lacquers for temporary protection. Excellent adhesion is, however, obtained by initial application of an etching primer the best known of such primers comprises polyvinyl butyral, zinc tetroxy-chromate and phosphoric acid. [Pg.584]

In terms of tonnage the bulk of plastics produced are thermoplastics, a group which includes polyethylene, polyvinyl chloride (p.v.c.), the nylons, polycarbonates and cellulose acetate. There is however a second class of materials, the thermosetting plastics. They are supplied by the manufacturer either as long-chain molecules, similar to a typical thermoplastic molecule or as rather small branched molecules. They are shaped and then subjected to either heat or chemical reaction, or both, in such a way that the molecules link one with another to form a cross-linked network (Fig. 18.6). As the molecules are now interconnected they can no longer slide extensively one past the other and the material has set, cured or cross linked. Plastics materials behaving in this way are spoken of as thermosetting plastics, a term which is now used to include those materials which can in fact cross link with suitable catalysts at room temperature. [Pg.916]

Hydroxyl groups are extremely reactive. These occur attached to the backbone of the cellulose molecule and polyvinyl alcohol. [Pg.923]

There are numerous examples of chemical reactions consequent upon chemical groups which occur repeatedly along a chain. In some cases the reaction occurs randomly between adjacent pairs of groups such as in the reaction between aldehydes and polyvinyl alcohol and of zinc dust with polyvinyl chloride ... [Pg.924]

Polyvinyl acetate and derivatives Polyvinyl acetate is used largely for coating applications, but the derivative polyvinyl alcohol, will, providing there are some residual acetate groups, dissolve in water. Reaction products of polyvinyl alcohol with aldehydes such as polyvinyl formal and polyvinyl butyral are highly specialised materials. [Pg.932]

Specific family or group of plastics (polyethylene, polyvinyl chlorides, etc.) are compounded or alloyed to provide different properties and/or processing behaviors. Thus a plastic listed in Fig. 5-6 could have different heat resistance properties. [Pg.319]

Polyhydric Alcohols. (Polyols). An alcohol with three or more hydroxyl groups, each attached to a different carbon atom. They are w-sol and of sweetish taste, which tends to intensify with increasing hydroxyl content. Examples of polyols of ordn interest are listed below. Polyvinyl alcohol is considered in a separate entry as a polymer although it is defined as a polyhydric alcohol. Polyols, when nitrated, make excellent expls, proplnt binders, plasticizers, etc. Prepn can follow the procedure of Lenth DuPuis (Ref 3) which uses a methanol suspension of either sucrose or dextrose and a special Cu-Al oxide catalyst to yield 60-65% distillable polyols at 240° and 1500psi Refs 1) Beil — refs found under individual compds 2) CA, under Alcohols, Polyhydric for compds of current ordn interest 3) C.W. Lenth R.N. DuPuis, "Polyhydric Alcohol Production by Hydrogenolysis of Sugars in the Presence of Copper-Aluminum Oxide , IEC 37, 152-57 (1945) CA 39, 1391 (1945)... [Pg.818]

The most common backbone structure found in commercial polymers is the saturated carbon-carbon structure. Polymers with saturated carbon-carbon backbones, such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyacrylates, are produced using chain-growth polymerizations. The saturated carbon-carbon backbone of polyethylene with no side groups is a relatively flexible polymer chain. The glass transition temperature is low at -20°C for high-density polyethylene. Side groups on the carbon-carbon backbone influence thermal transitions, solubility, and other polymer properties. [Pg.4]

Alcohol functions have also been introduced via hydrosilylation reactions, for example, the reaction of T8[OSiMe2H]8 with allyl alcohol and allyloxy ethanol (Table 19). In the first case, it has been postulated that the compound T8[OSiMe2 (CH2)30H]8 is not very stable due to back-biting of the -OH groups on the silicon corners (Figure 31). Nevertheless, it reacts with polymers such as polyvinyl pyrrolidone to give polymer hybrids (Table 19, entries 4 and 5). [Pg.55]

When two polymers interact or react with each other, they are likely to provide a compatible, even a miscible, blend. Epoxidized natural rubber (ENR) interacts with chloro-sulfonated polyethylene (Hypalon) and polyvinyl chloride (PVC) forming partially miscible and miscible blends, respectively, due to the reaction between chlorosulfonic acid group and chlorine with epoxy group of ENR. Chiu et al. have studied the blends of chlorinated polyethylene (CR) with ENR at blend ratios of 75 25, 50 50, and 25 75, as well as pure rubbers using sulfur (Sg), 2-mercapto-benzothiazole, and 2-benzothiazole disulfide as vulcanizing agents [32]. They have studied Mooney viscosity, scorch... [Pg.316]

Workers involved in the manufacture or use of trichloroethylene as a metal degreaser or general solvent may constitute a group at risk because of the potential for occupational exposure. Occupational exposure to trichloroethylene may also occur during its use as a chemical intermediate in the production of polyvinyl chloride (McNeill 1979). [Pg.223]

The combined results of kinetic studies on condensation polymerization reactions and on the degradation of various polymers by reactions which bring about chain scission demonstrate quite clearly that the chemical reactivity of a functional group does not ordinarily depend on the size of the molecule to which it is attached. Exceptions occur only when the chain is so short as to allow the specific effect of one end group on the reactivity of the other to be appreciable. Evidence from a third type of polymer reaction, namely, that in which the lateral substituents of the polymer chain undergo reaction without alteration in the degree of polymerization, also support this conclusion. The velocity of saponification of polyvinyl acetate, for example, is very nearly the same as that for ethyl acetate under the same conditions. ... [Pg.102]

Providing an ion exchanger with a sufficient number of redox groups so that conduction can occur by a relay-type redox-change mechanism. Examples are hydroquinone-derived redox polymers and polyvinyl polymers with a tetrathia-fulvalene, ferrocene, or carbazole group, which have been found useful for research and analytical applications. [Pg.457]

And finally, irrespective of the types of elements in the backbone, the properties of a linear polymer will depend on the side groups attached to that backbone. This principle underlies all polyolefin and polyvinyl macromolecular science and technology. It applies equally well to inorganic polymer systems. [Pg.252]


See other pages where Polyvinyl groups is mentioned: [Pg.362]    [Pg.348]    [Pg.362]    [Pg.348]    [Pg.29]    [Pg.295]    [Pg.551]    [Pg.553]    [Pg.7]    [Pg.69]    [Pg.218]    [Pg.504]    [Pg.654]    [Pg.234]    [Pg.831]    [Pg.833]    [Pg.538]    [Pg.882]    [Pg.28]    [Pg.118]    [Pg.166]    [Pg.875]    [Pg.893]    [Pg.163]    [Pg.356]    [Pg.156]    [Pg.335]    [Pg.46]    [Pg.218]    [Pg.325]    [Pg.301]    [Pg.45]   
See also in sourсe #XX -- [ Pg.89 , Pg.90 ]




SEARCH



Polyvinyl Alcohol 1,2-glycol group

Polyvinyl Alcohol carbonyl group

Polyvinyl acetate functional groups

Polyvinyl hydroxyl groups

© 2024 chempedia.info