Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrenes growth

Since polymer swelling is poor and the aqueous solubiUty of acrylonitrile is relatively high, the tendency for radical capture is limited. Consequentiy, the rate of particle nucleation is high throughout the course of the polymerization, and particle growth occurs predominantiy by a process of agglomeration of primary particles. Unlike emulsion particles of a readily swollen polymer, such as polystyrene, the acrylonitrile aqueous dispersion polymer particles are massive agglomerates of primary particles which are approximately 100 nm in diameter. [Pg.278]

Structural Components. In most appHcations stmctural foam parts are used as direct replacements for wood, metals, or soHd plastics and find wide acceptance in appHances, automobUes, furniture, materials-handling equipment, and in constmction. Use in the huil ding and constmction industry account for more than one-half of the total volume of stmctural foam appHcations. High impact polystyrene is the most widely used stmctural foam, foUowed by polypropylene, high density polyethylene, and poly(vinyl chloride). The constmction industry offers the greatest growth potential for ceUular plastics. [Pg.416]

In the mid-to-late 1980s, growth estimates of the use of polystyrene and polyurethane ceUular plastic insulation materials and products were a healthy 10% per year and greater for phenoHc (40,41). The principal appHcation where strongest growth was forecast for these types was for roofing, especially single-membrane systems (42). [Pg.336]

Styrene—butadiene elastomers, emulsion and solution types combined, are reported to be the largest-volume synthetic mbber, with 28.7% of the world consumption of all synthetic mbber in 1994 (38). This percentage has decreased steadily since 1973 when SBR s market share was 57% (39). The decline has been attributed to the switch to radial tires (longer milage) and the growth of other synthetic polymers, such as polyethylene, polypropylene, polyester, and polystyrene. Since 1985, production of SBR has been flat (Table 3). [Pg.499]

Phenolics are consumed at roughly half the volume of PVC, and all other plastics are consumed in low volume quantities, mosdy in single apphcation niches, unlike workhorse resins such as PVC, phenoHc, urea—melamine, and polyurethane. More expensive engineering resins have a very limited role in the building materials sector except where specific value-added properties for a premium are justified. Except for the potential role of recycled engineering plastics in certain appHcations, the competitive nature of this market and the emphasis placed on end use economics indicates that commodity plastics will continue to dominate in consumption. The apphcation content of each resin type is noted in Table 2. Comparative prices can be seen in Table 5. The most dynamic growth among important sector resins has been seen with phenoHc, acryUc, polyurethane, LLDPE/LDPE, PVC, and polystyrene. [Pg.331]

One particular growth area for polypropylene mouldings is for thin-wall packaging such as margarine tubs. This is largely at the expense of polystyrene and arises partly from economics and partly from the wish to have a produet free of residual styrene monomer. [Pg.266]

Figure 8.1. (a) Spherulites growing in a thin film of isotactic polystyrene, seen by optical microscopy with crossed polars (from Bassett 1981, after Keith 196.3). (b) A common sequence of forms leading to sphertililic growth (after Bassett 1981). The fibres consist of zigzag polymer chains. [Pg.312]

Polymerization of styrene is carried out under free-radical conditions, often with benzoyl peroxide as the initiator. Figure 11.11 illustrates a step in the growth of a polystyrene chain by a mechanism analogous to that of the polymerization of ethylene (Section 6.21). [Pg.449]

The most important use of polystyrene is in packaging. Molded polystyrene is used in items such as automobile interior parts, furniture, and home appliances. Packaging uses plus specialized food uses such as containers for carryout food are growth areas. Expanded polystyrene foams, which are produced by polymerizing styrene with a volatile solvent such as pentane, have low densities. They are used extensively in insulation and flotation (lifejackets). [Pg.335]

About 8,000 metric tons of peroxides were consumed in 1972. This consumption was strongly stimulated by the rapid growth in reinforced plastics (Ref 23). The largest volume product is benzoyl peroxide which is used in polystyrene and polyester markets for such items as toys, automobiles, furniture, marine, transportation and mil requirements. Also, methyl ethyl ketone peroxide is used in large volumes to cure (as a catalyst) styrene-unsatur-ated polyester adhesive resins used in mil ammo adhesive applications, as well as in glass fiber reinforced plastic products such as boats, shower stalls, tub components, automobile bodies, sports equipment, etc. The monoperesters are growing slowly because of some substitution of the peroxydicarbonates and azo compds (Refs 8,9 23)... [Pg.676]

Thin polymer films may also be investigated by TEM and high resolution images are obtained for e.g. thin films of liquid crystalline polymers [64]. Usually thin microtome cuts from bulk samples are investigated, but also epitaxial growth of polyoxymethylene on NaCl [152], chain folding of polyethylene crystals [153], epitaxial crystallization of polypropylene on polystyrene [154] or monomolecular polystyrene particles [155] are observed. The resolution is, however, in most cases not comparable to STM. [Pg.387]

The most common backbone structure found in commercial polymers is the saturated carbon-carbon structure. Polymers with saturated carbon-carbon backbones, such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyacrylates, are produced using chain-growth polymerizations. The saturated carbon-carbon backbone of polyethylene with no side groups is a relatively flexible polymer chain. The glass transition temperature is low at -20°C for high-density polyethylene. Side groups on the carbon-carbon backbone influence thermal transitions, solubility, and other polymer properties. [Pg.4]

Chain growth polymerization. Important polymers manufactured hy chain growth are polyethylene, polystyrene, polyacrylonitrile, and polymethacrylates. [Pg.100]

FIG. 2 -potential as a function of layer number for PDADMAC/PSS multilayers on sulfate-stabilized polystyrene (PS) latices. The multilayers were assembled onto the negatively charged PS latices ( -potential of ca. -65 mV, layer number = 0) by the consecutive deposition of PDADMAC (odd layers) and PSS (even layers). Positive values are observed for PDADMAC deposition, and negative values for PSS adsorption. The alternating values are characteristic of stepwise growth of multilayer films on colloids. [Pg.510]

Torres, F. E., Russel, W. B., and Schowalter, W. R., Floe structure and growth kinetics for rapid shear coagulation of polystyrene colloids. J. Colloid Interface Sci. 142, 554-574 (1991a). Torres, F. E., Russel, W. B., and Schowalter, W. R., Simulations of coagulation in viscous flows. J. Colloid Interface Sci. 145, 51-73 (1991b). [Pg.204]

Over 3,000,000,000 lb of polystyrene were produced in 1970.27 The capacity of the plant to be designed is around 5% of this, and it is considered a large plant. The growth rate of polystyrene is predicted to be 11.5% per year28 between 1969 and 1973. Thus when this plant comes on stream it should not cause any great surplus of polystyrene to occur. For working this example it should be assumed that it is summer, 1971. [Pg.48]

A 50% expansion 5 years after startup is expected because of rapid growth in the use of polystyrene and the excellent choice of a site. [Pg.76]

Addition polymers, which are also known as chain growth polymers, make up the bulk of polymers that we encounter in everyday life. This class includes polyethylene, polypropylene, polystyrene, and polyvinyl chloride. Addition polymers are created by the sequential addition of monomers to an active site, as shown schematically in Fig. 1.7 for polyethylene. In this example, an unpaired electron, which forms the active site at the growing end of the chain, attacks the double bond of an adjacent ethylene monomer. The ethylene unit is added to the end of the chain and a free radical is regenerated. Under the right conditions, chain extension will proceed via hundreds of such steps until the supply of monomers is exhausted, the free radical is transferred to another chain, or the active site is quenched. The products of addition polymerization can have a wide range of molecular weights, the distribution of which depends on the relative rates of chain grcnvth, chain transfer, and chain termination. [Pg.23]


See other pages where Polystyrenes growth is mentioned: [Pg.326]    [Pg.326]    [Pg.265]    [Pg.384]    [Pg.308]    [Pg.476]    [Pg.2143]    [Pg.411]    [Pg.440]    [Pg.462]    [Pg.138]    [Pg.146]    [Pg.183]    [Pg.111]    [Pg.430]    [Pg.7]    [Pg.676]    [Pg.223]    [Pg.330]    [Pg.108]    [Pg.215]    [Pg.216]    [Pg.217]    [Pg.508]    [Pg.155]    [Pg.211]    [Pg.214]    [Pg.1246]    [Pg.193]    [Pg.338]    [Pg.208]    [Pg.218]    [Pg.18]    [Pg.518]   
See also in sourсe #XX -- [ Pg.365 , Pg.366 ]




SEARCH



Isotactic polystyrene spherulitic growth rate

Polystyrene Prepared by Ionic Chain-Growth Polymerization

Polystyrene spherulite growth rate

© 2024 chempedia.info