Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene paper

Formation in Polystyrene, paper presented at British Plastics Institute, Research Meeting on the Effect of Structure on the Fracture of Plastics— The Role of Craze in Fracture, Univ. of Liverpool, Liverpool, England (April 14, 1972). [Pg.116]

In these 5 Polymer Foams, currently, the largest shipment has been Foamed Polystyrene, which is classified to Expandable Polystyrene (EPS), Extruded Polystyrene (XPS), and Polystyrene Paper (PSP). Among those, EPS and XPS Polymer Foams are used for high performance insulating materials. [Pg.1168]

A study published in The Netherlands in 1992 [28] evaluated the environmental impact of polystyrene, paper, and porcelain coffee cups. The cups were made from a 50 50 blend of high-impact polystyrene (HIPS) and general-purpose... [Pg.167]

J. van Eijk, J. W. Nieuwenhuis, C. W. Post, and J. H. de Zeeuw, Reusable Versus Disposable A Comparison of the Environmental Impact of Polystyrene, Paper/Cardboard and Porcelain Crockery, Ministry of Housing, Physical Planning and Environment, The Netherlands, 1992. [Pg.182]

TBBPA has found use as a reactive flame retardant in the production of epoxy and polycarbonate resins added to circuit boards used in computers and in many other devices. In about 10% of cases TBBPA is used as an additive flame retardant, especially in the production of acrylonitrile-butadiene-styrene polymers, polystyrene, papers, textiles, televisions, office equipment and others. [Pg.1004]

Foaming polystyrene resin prepared by blending with gas deHvers an opaque, low density sheet useful for beverage-bottle and plastic can labels as a water-resistant paper substitute (see Styrene polymers). [Pg.452]

In recent years, synthetic polymeric pigments have been promoted as fillers for paper. Pigments that ate based on polystyrene [9003-53-6] latexes and on highly cross-linked urea—formaldehyde resins have been evaluated for this appHcation. These synthetic pigments are less dense than mineral fillers and could be used to produce lightweight grades of paper, but their use has been limited in the United States. [Pg.21]

One alternative approach to the two-stage steam moulding process is that in which impregnated beads are fed directly to an injection moulding machine or extruder so that expansion and consolidation occur simultaneously. This approach has been used to produce expanded polystyrene sheet and paper by a tubular process reminiscent of that used with polyethylene. Bubble nucleating... [Pg.458]

Different core materials are used. They include foam, honeycomb core (plastic, paper, aluminum, etc.), ribs, balsa wood, filler spacers, corrugated sheet spacers, etc. Materials such as polyurethane foam, cellulosic foams, and polystyrene foams are widely used as core materials. Plastics, such as glass-reinforced polyester, are frequently used as the skins for panels. Different skin materials are used such as metallic skins alone or in conjunction with plastic skins. [Pg.150]

As an example we report in this paper the conformational energy maps of two already cited stereoregular polymers, which have been obtained very recently, syndiotactic polystyrene s-PS and syndiotactic polybutene s-PB (Fig. 4 and 5, respectively). In fact, the energy map calculated for s-PS shows... [Pg.190]

The heat of dissociation in hexane solution of lithium polyisoprene, erroneously assumed to be dimeric, was reported in a 1984 review 71) to be 154.7 KJ/mole. This value, taken from the paperl05> published in 1964 by one of its authors, was based on a viscometric study. The reported viscometric data were shown i06) to yield greatly divergent AH values, depending on what value of a, the exponent relating the viscosity p of a concentrated polymer solution to DPW of the polymer (q DP ), is used in calculation. As shown by a recent compilation 1071 the experimental a values vary from 3.3 to 3.5, and another recent paper 108) reports its variation from 3.14 to 4. Even a minute variation of oe results in an enormous change of the computed AH, namely from 104.5 KJ/mole for oe = 3.38 to 209 KJ/mole for oe = 3.42. Hence, the AH = 154.7 KJ/mole, computed for a = 3.40, is meaningless. For the same reasons the value of 99.5 KJ/mole for the dissociation of the dimeric lithium polystyrene reported in the same review and obtained by the viscometric procedure is without foundation. [Pg.123]

Chattopadhyay, S., Kwon, Y., Naskar, A.K., Bhowmick, A.K., and Puskas, J.E. Novel Dendritic (Arborescent) Pol3dsobutylene-Polystyrene Thermoplastic Elastomers. Paper 27, ACS Rubber Division, 162th Technical Meeting, October 8-11, Pittsburgh, PA, 2002. [Pg.216]

El Fray, M., Puskas, J.E., Tomkins, M., and Altstadt, V. Evaluation of the Eatigue Properties of a Novel Polyisobutylene-Polystyrene Thermoplastic Elastomer in Comparison with other Rubbery Biomaterials. Paper 76, ACS Rubber Division, 166th Technical Meeting, October 5-8, Columbus, OH, 2004. Puskas, J.E. and Chen, Y. Novel Thermoplastic Elastomers for Biomedical Applications. Paper 40, ACS Rubber Division, 163nd Technical Meeting, April 28-30, San Erancisco, CA, 2003. [Pg.218]

Recycling polymers is one way to minimize the disposal problem, but not much recycling occurs at present. Only about 25% of the plastic made in the United States is recycled each year, compared with 55% of the aluminum and 40% of the paper. A major obstacle to recycling plastics is the great variation in the composition of polymeric material. Polyethylene and polystyrene have different properties, and a mixture of the two is inferior to either. Recyclers must either separate different types of plastics or process the recycled material for less specialized uses. Manufacturers label plastic containers with numbers that indicate their polymer type and make it easier to recycle these materials. Table 13-5 shows the recycling number scheme. [Pg.918]

This paper will be limited to a discussion of our packed column studies in which we have addressed attention to questions regarding, (a) the role of ionic strength and surfactant effects on both HDC and porous packed column behavior, (b) the effects of pore size and pore size distribution on resolution, and (c) the effects of the light scattering characteristics of polystyrene on signal resolution and particle size distribution determination. [Pg.2]

The aim of the present paper is to report on the solution structure of polymers, to show how structure-property relationships can be derived in a simple manner, so that they can be used for technical applications. Some predictions will also be made concerning the viscous and elasticity yield as well as polymer shear stability. To demonstrate these theoretical predictions narrowly distributed polystyrene samples will mainly be used as examples. [Pg.8]

This paper extends previous studies on the control of a polystyrene reactor by including (1) a dynamic lag on the manipulated flow rate to improve dynamic decoupling, and (2) pole placement via state variable feedback to improve overall response time. Included from the previous work are optimal allocation of resources and steady state decoupling. Simulations on the non-linear reactor model show that response times can be reduced by a factor of 6 and that for step changes in desired values the dynamic decoupling is very satisfactory. [Pg.187]

The aim of this paper is to offer experimental results for the molecular weight dependence of adsorption of polystyrene-sulfonate) onto a platinum plate from aqueous NaCl solution at 25 °C. Measurements of poly(styrenesulfonate) adsorption were carried out by ellipsometry. The dependences of molecular weight and added salt concentration on the thickness of the adsorbed layer and also the adsorbances of polymer and salt are examined. [Pg.40]

In this paper we present results for a series of PEO fractions physically adsorbed on per-deutero polystyrene latex (PSL) in the plateau region of the adsorption isotherm. Hydro-dynamic and adsorption measurements have also been made on this system. Using a porous layer theory developed recently by Cohen Stuart (10) we have calculated the hydrodynamic thickness of these adsorbed polymers directly from the experimental density profiles. The results are then compared with model calculations based on density profiles obtained from the Scheutjens and Fleer (SF) layer model of polymer adsorption (11). [Pg.148]

In this paper we briefly describe the apparatus and experimental method, then consider the interactions between i) layers of polystyrene in cyclohexane under poor-solvent and ii) 0 - solvent conditions,iii) the interactions between adsorbed PEO layers in a good (aqueous) solvent and iv) the surface forces between layers of adsorbed poly-L-lysine, a cationic polyelectrolyte, in aqueous salt solutions. We consider briefly the implications of our results for the current theoretical understanding. [Pg.228]

Much work on the preparation of nonaqueous polymer dispersions has involved the radical polymerization of acrylic monomers in the presence of copolymers having the A block the same as the acrylic polymer in the particle core 2). The preparation of polymer dispersions other than polystyrene in the presence of a PS-PDMS diblock copolymer is of interest because effective anchoring of the copolymer may be influenced by the degree of compatibility between the PS anchor block and the polymer molecules in the particle core. The present paper describes the interpretation of experimental studies performed with the aim of determining the mode of anchoring of PS blocks to polystyrene, poly(methyl methacrylate), and poly(vinyl acetate) (PVA) particles. [Pg.268]

In this paper we describe methods in which polystyrene (PS) and polydimethylsiloxane (PDMS) have been successfully grafted to silica particles, avoiding the dry stage. [Pg.282]

In this paper we report some rheological studies of aqueous concentrated polystyrene latex dispersions, in the presence of physically adsorbed poly(vinyl alcohol). This system has been chosen in view of its relevance to many practical systems and since many of the parameters needed for interpretation of the rheological results are available (15-18). The viscoelastic properties of a 20% w/w latex dispersion were investigated as a function of polymer coverage, using creep measurements. [Pg.413]


See other pages where Polystyrene paper is mentioned: [Pg.733]    [Pg.80]    [Pg.733]    [Pg.80]    [Pg.374]    [Pg.231]    [Pg.22]    [Pg.37]    [Pg.49]    [Pg.111]    [Pg.470]    [Pg.118]    [Pg.317]    [Pg.162]    [Pg.336]    [Pg.7]    [Pg.114]    [Pg.234]    [Pg.464]    [Pg.10]    [Pg.10]    [Pg.11]    [Pg.867]    [Pg.465]    [Pg.483]    [Pg.292]    [Pg.69]    [Pg.268]    [Pg.131]   
See also in sourсe #XX -- [ Pg.731 ]




SEARCH



© 2024 chempedia.info