Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Processes polymerization

Polymerization processes yielding polymers, whose mers are constitutionally identical to the reacting monomers are now classified as addition polymerizations. Thus styrene can be converted, by addition polymerization, to polystyrene ... [Pg.321]

The reaction mechanisms of plasma polymerization processes are not understood in detail. Poll et al [34] (figure C2.13.6) proposed a possible generic reaction sequence. Plasma-initiated polymerization can lead to the polymerization of a suitable monomer directly at the surface. The reaction is probably triggered by collisions of energetic ions or electrons, energetic photons or interactions of metastables or free radicals produced in the plasma with the surface. Activation processes in the plasma and the film fonnation at the surface may also result in the fonnation of non-reactive products. [Pg.2807]

Ia. Rawe and J. T. Khamis, Addition and Condensation Polymerization Processes, Advances in Chemistry Series, Vol. 91, American Chemical Society Publications, Washington, D.C., 1969. [Pg.11]

It is the third of these criteria that offers the most powerful insight into the nature of the polymerization process for this important class of materials. We shall frequently use the terms step-growth and condensation polymers as synonyms, although by the end of the chapter it will be apparent that step-growth polymerization encompasses a wider range of reactions and products than either criteria (1) or (2) above would indicate. [Pg.273]

The remarks of this and the last section are only a small fraction of what might be said about these important materials. We have commented on some aspects of the polymerization processes and of the polymers themselves that have a direct bearing on the concepts discussed here and elsewhere in this volume. This material provides an excellent example of the symbiosis between theoretical and application-oriented points of view. Each stimulates and reinforces the other with new challenges, although it must be conceded that many industrial processes reach a fairly high degree of empirical refinement before the conceptual basis is quantitatively developed. [Pg.309]

The initiators which are used in addition polymerizations are sometimes called catalysts, although strictly speaking this is a misnomer. A true catalyst is recoverable at the end of the reaction, chemically unchanged. Tliis is not true of the initiator molecules in addition polymerizations. Monomer and polymer are the initial and final states of the polymerization process, and these govern the thermodynamics of the reaction the nature and concentration of the intermediates in the process, on the other hand, determine the rate. This makes initiator and catalyst synonyms for the same material The former term stresses the effect of the reagent on the intermediate, and the latter its effect on the rate. The term catalyst is particularly common in the language of ionic polymerizations, but this terminology should not obscure the importance of the initiation step in the overall polymerization mechanism. [Pg.349]

Inhibitors and retarders differ in the extent to which they interfere with polymerization, and not in their essential activity. An inhibitor is defined as a substance which blocks polymerization completely until it is either removed or consumed. Thus failure to totally eliminate an inhibitor from purified monomer will result in an induction period in which the inhibitor is first converted to an inert form before polymerization can begin. A retarder is less efficient and merely slows down the polymerization process by competing for radicals. [Pg.395]

Emulsifying agents which are soaps or detergents play a central role in the emulsion polymerization process. [Pg.398]

Before we examine the polymerization process itself, it is essential to understand the behavior of the emulsifier molecules. This class of substances is characterized by molecules which possess a polar or ionic group or head and a hydrocarbon chain or tail. The latter is often in the 10-20 carbon atom size range. Dodecyl sulfate ions, from sodium dodecyl sulfate, are typical ionic emulsifiers. These molecules have the following properties which are pertinent to the present discussion ... [Pg.398]

In estimating the enthalpy of polymerization, the physical state of both starting monomer and polymer must be specified. Changes in state are accompanied by ethalpy changes. Therefore, they also affect the level of the polymerization enthalpy. The AfT forN ylylene previously mentioned is apphcable to the monomer as an ideal gas. To make comparisons with other polymerization processes, most of which start with condensed monomer, a heat of vaporization for N ylylene is needed. It is assumed herein that it is the same as that for N ylene, 42.4 kJ /mol (10.1 kcal/mol). Thus the AfT of the hquid monomer -xylylene is 192.3 kJ/mol (46.0 kcal /mol). [Pg.431]

Acrylates are primarily used to prepare emulsion and solution polymers. The emulsion polymerization process provides high yields of polymers in a form suitable for a variety of appHcations. Acrylate polymer emulsions were first used as coatings for leather in the eady 1930s and have found wide utiHty as coatings, finishes, and binders for leather, textiles, and paper. Acrylate emulsions are used in the preparation of both interior and exterior paints, door poHshes, and adhesives. Solution polymers of acrylates, frequentiy with minor concentrations of other monomers, are employed in the preparation of industrial coatings. Polymers of acryHc acid can be used as superabsorbents in disposable diapers, as well as in formulation of superior, reduced-phosphate-level detergents. [Pg.148]

Emulsion Process. The emulsion polymerization process utilizes water as a continuous phase with the reactants suspended as microscopic particles. This low viscosity system allows facile mixing and heat transfer for control purposes. An emulsifier is generally employed to stabilize the water insoluble monomers and other reactants, and to prevent reactor fouling. With SAN the system is composed of water, monomers, chain-transfer agents for molecular weight control, emulsifiers, and initiators. Both batch and semibatch processes are employed. Copolymerization is normally carried out at 60 to 100°C to conversions of - 97%. Lower temperature polymerization can be achieved with redox-initiator systems (51). [Pg.193]

A schematic of a continuous bulk SAN polymerization process is shown in Figure 4 (90). The monomers are continuously fed into a screw reactor where copolymerization is carried out at 150°C to 73% conversion in 55 min. Heat of polymerization is removed through cooling of both the screw and the barrel walls. The polymeric melt is removed and fed to the devolatilizer to remove unreacted monomers under reduced pressure (4 kPa or 30 mm Hg) and high temperature (220°C). The final product is claimed to contain less than 0.7% volatiles. Two devolatilizers in series are found to yield a better quaUty product as well as better operational control (91,92). [Pg.195]

An example of a commercial semibatch polymerization process is the early Union Carbide process for Dynel, one of the first flame-retardant modacryhc fibers (23,24). Dynel, a staple fiber that was wet spun from acetone, was introduced in 1951. The polymer is made up of 40% acrylonitrile and 60% vinyl chloride. The reactivity ratios for this monomer pair are 3.7 and 0.074 for acrylonitrile and vinyl chloride in solution at 60°C. Thus acrylonitrile is much more reactive than vinyl chloride in this copolymerization. In addition, vinyl chloride is a strong chain-transfer agent. To make the Dynel composition of 60% vinyl chloride, the monomer composition must be maintained at 82% vinyl chloride. Since acrylonitrile is consumed much more rapidly than vinyl chloride, if no control is exercised over the monomer composition, the acrylonitrile content of the monomer decreases to approximately 1% after only 25% conversion. The low acrylonitrile content of the monomer required for this process introduces yet another problem. That is, with an acrylonitrile weight fraction of only 0.18 in the unreacted monomer mixture, the low concentration of acrylonitrile becomes a rate-limiting reaction step. Therefore, the overall rate of chain growth is low and under normal conditions, with chain transfer and radical recombination, the molecular weight of the polymer is very low. [Pg.279]

Fig. 3. An aqueous dispersion polymerization process used in the manufacture of acrylic and modacrylic fibers. Fig. 3. An aqueous dispersion polymerization process used in the manufacture of acrylic and modacrylic fibers.
Aqueous Dispersions. The dispersion is made by the polymerization process used to produce fine powders of different average particle sizes (58). The most common dispersion has an average particle size of about 0.2 p.m, probably the optimum particle size for most appHcations. The raw dispersion is stabilized with a nonionic or anionic surfactant and concentrated to 60—65 wt % soHds by electrodecantation, evaporation, or thermal concentration (59). The concentrated dispersion can be modified further with chemical additives. The fabrication characteristics of these dispersions depend on polymerization conditions and additives. [Pg.350]

PVDE is manufactured using radical initiated batch polymerization processes in aqueous emulsion or suspension operating pressures may range from 1 to 20 MPa (10—200 atm) and temperatures from 10 to 130°C. Polymerization method, temperature, pressure, recipe ingredients, the manner in which they are added to the reactor, the reactor design, and post-reactor processing are variables that influence product characteristics and quaUty. [Pg.386]

An alternative polymerization process utilizes a slurry of calcium chloride in NMP as the polymerization medium. The solubiHty of calcium chloride is only 6% at 20°C however, the salt continues to dissolve as conversion of monomers to polymer proceeds and calcium chloride/polyamide complexes are formed. Polymer molecular weight is further increased by the addition of /V, /V- dim ethyl a n i1 in e as an acid acceptor. This solvent system produces fiber-forming polymer of molecular weights comparable to that formed in HMPA/NMP. [Pg.65]

The polymerization of monomers to form hydrocarbon resins is typically carried out by either the direct addition of catalyst to a hydrocarbon fraction or by the addition of feed to a solvent—catalyst slurry or solution. Most commercial manufacturers use a continuous polymerization process as opposed to a batch process. Reactor temperatures are typically in the range of 0—120°C. [Pg.351]

Other than fuel, the largest volume appHcation for hexane is in extraction of oil from seeds, eg, soybeans, cottonseed, safflower seed, peanuts, rapeseed, etc. Hexane has been found ideal for these appHcations because of its high solvency for oil, low boiling point, and low cost. Its narrow boiling range minimises losses, and its low benzene content minimises toxicity. These same properties also make hexane a desirable solvent and reaction medium in the manufacture of polyolefins, synthetic mbbers, and some pharmaceuticals. The solvent serves as catalyst carrier and, in some systems, assists in molecular weight regulation by precipitation of the polymer as it reaches a certain molecular size. However, most solution polymerization processes are fairly old it is likely that those processes will be replaced by more efficient nonsolvent processes in time. [Pg.406]

Process Modeling. The complexity of emulsion polymerization makes rehable computer models valuable. Many attempts have been made to simulate the emulsion polymerization process for different monomer systems (76—78). [Pg.27]

Fig. 15. Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent cross-linking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film... Fig. 15. Schematic of the interfacial polymerization process. The microporous film is first impregnated with an aqueous amine solution. The film is then treated with a multivalent cross-linking agent dissolved in a water-immiscible organic fluid, such as hexane or Freon-113. An extremely thin polymer film...
Free-radical polymerization processes are used to produce virtually all commercial methacrylic polymers. Usually free-radical initiators (qv) such as azo compounds or peroxides are used to initiate the polymerizations. Photochemical and radiation-initiated polymerizations are also well known. At a constant temperature, the initial rate of the bulk or solution radical polymerization of methacrylic monomers is first-order with respect to monomer concentration, and one-half order with respect to the initiator concentration. Rate data for polymerization of several common methacrylic monomers initiated with 2,2 -azobisisobutyronitrile [78-67-1] (AIBN) have been deterrnined and are shown in Table 8. [Pg.263]

Three bulk polymerization processes are commercially important for the production of methacrylate polymers batch cell casting, continuous casting, and continuous bulk polymerization. Approximately half the worldwide production of bulk polymerized methacrylates is in the form of molding and extmsion compounds, a quarter is in the form of cell cast sheets, and a quarter is in the form of continuous cast sheets. [Pg.265]


See other pages where Processes polymerization is mentioned: [Pg.499]    [Pg.299]    [Pg.328]    [Pg.316]    [Pg.142]    [Pg.204]    [Pg.47]    [Pg.135]    [Pg.277]    [Pg.279]    [Pg.280]    [Pg.282]    [Pg.328]    [Pg.333]    [Pg.350]    [Pg.387]    [Pg.400]    [Pg.419]    [Pg.64]    [Pg.66]    [Pg.373]    [Pg.24]    [Pg.259]    [Pg.321]    [Pg.429]    [Pg.153]    [Pg.367]   
See also in sourсe #XX -- [ Pg.87 ]

See also in sourсe #XX -- [ Pg.44 , Pg.45 , Pg.270 , Pg.271 , Pg.288 ]

See also in sourсe #XX -- [ Pg.153 ]

See also in sourсe #XX -- [ Pg.289 ]

See also in sourсe #XX -- [ Pg.348 ]

See also in sourсe #XX -- [ Pg.191 ]

See also in sourсe #XX -- [ Pg.153 ]

See also in sourсe #XX -- [ Pg.142 ]

See also in sourсe #XX -- [ Pg.149 , Pg.332 , Pg.342 , Pg.345 , Pg.346 , Pg.354 , Pg.358 ]

See also in sourсe #XX -- [ Pg.105 , Pg.301 ]

See also in sourсe #XX -- [ Pg.13 , Pg.135 ]

See also in sourсe #XX -- [ Pg.146 ]

See also in sourсe #XX -- [ Pg.777 , Pg.778 , Pg.779 ]

See also in sourсe #XX -- [ Pg.167 ]

See also in sourсe #XX -- [ Pg.359 ]

See also in sourсe #XX -- [ Pg.164 ]

See also in sourсe #XX -- [ Pg.104 , Pg.138 , Pg.347 ]

See also in sourсe #XX -- [ Pg.54 ]

See also in sourсe #XX -- [ Pg.345 , Pg.346 , Pg.352 , Pg.363 , Pg.364 , Pg.367 , Pg.368 , Pg.370 , Pg.371 , Pg.375 , Pg.386 ]

See also in sourсe #XX -- [ Pg.257 , Pg.258 ]

See also in sourсe #XX -- [ Pg.21 ]

See also in sourсe #XX -- [ Pg.105 , Pg.301 , Pg.840 ]

See also in sourсe #XX -- [ Pg.21 ]

See also in sourсe #XX -- [ Pg.54 , Pg.123 , Pg.126 ]




SEARCH



© 2024 chempedia.info