Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon atomic size

Before we examine the polymerization process itself, it is essential to understand the behavior of the emulsifier molecules. This class of substances is characterized by molecules which possess a polar or ionic group or head and a hydrocarbon chain or tail. The latter is often in the 10-20 carbon atom size range. Dodecyl sulfate ions, from sodium dodecyl sulfate, are typical ionic emulsifiers. These molecules have the following properties which are pertinent to the present discussion ... [Pg.398]

The polarizability of silicon is greatly facilitated by a larger (as compared to the carbon atom) size of valent AO and, consequently, by a higher diffuseness of its electron cloud. [Pg.104]

This observation that the length of the hydrocarbon chain could be varied from 16 to 26 carbon atoms without affecting the limiting area could only mean that at this point the molecules were oriented vertically. From the molecular weight and density of palmitic acid, one computes a molecular volume of 495 A a molecule occupying only 21 A on the surface could then be about 4.5 A on the side but must be about 23 A long. In this way one begins to obtain information about the shape and orientation as well as the size of molecules. [Pg.102]

One of the most sensitive tests of the dependence of chemical reactivity on the size of the reacting molecules is the comparison of the rates of reaction for compounds which are members of a homologous series with different chain lengths. Studies by Flory and others on the rates of esterification and saponification of esters were the first investigations conducted to clarify the dependence of reactivity on molecular size. The rate constants for these reactions are observed to converge quite rapidly to a constant value which is independent of molecular size, after an initial dependence on molecular size for small molecules. The effect is reminiscent of the discussion on the uniqueness of end groups in connection with Example 1.1. In the esterification of carboxylic acids, for example, the rate constants are different for acetic, propionic, and butyric acids, but constant for carboxyUc acids with 4-18 carbon atoms. This observation on nonpolymeric compounds has been generalized to apply to polymerization reactions as well. The latter are subject to several complications which are not involved in the study of simple model compounds, but when these complications are properly considered, the independence of reactivity on molecular size has been repeatedly verified. [Pg.278]

Semiconductor materials are rather unique and exceptional substances (see Semiconductors). The entire semiconductor crystal is one giant covalent molecule. In benzene molecules, the electron wave functions that describe probabiUty density ate spread over the six ting-carbon atoms in a large dye molecule, an electron might be delocalized over a series of rings, but in semiconductors, the electron wave-functions are delocalized, in principle, over an entire macroscopic crystal. Because of the size of these wave functions, no single atom can have much effect on the electron energies, ie, the electronic excitations in semiconductors are delocalized. [Pg.115]

Displacement reactions involving a heteroatom and a carbon atom are very common in the synthesis of heterocyclics of many sizes. Most often, the heteroatom functions as a... [Pg.32]

Polypeptides. These are a string of a-amino acids usually with the natural 5(L) [L-cysteine is an exception and has the R absolute configuration] or sometimes "unnatural" 7f(D) configuration at the a-carbon atom. They generally have less than -100 amino acid residues. They can be naturally occurring or, because of their small size, can be synthesised chemically from the desired amino acids. Their properties can be very similar to those of small proteins. Many are commercially available, can be custom made commercially or locally with a peptide synthesiser. They are purified by HPLC and can be used without further purification. Their purity can be checked as described under proteins. [Pg.560]

Table 2.3 shows very obvious parallels with the TMS scale of C shifts. Thus, the shifts (Table 2.3) decrease in size in the sequence nitroso, nitro, imino, amino, following the corresponding behaviour of the shifts of carbonyl, carboxy, alkenyl and alkyl carbon atoms (Table 2.2). [Pg.15]

The size of the group attached to the main chain carbon atom can influence the glass transition point. For example, in polytetrafluoroethylene, which differs from polyethylene in having fluorine instead of hydrogen atoms attached to the backbone, the size of the fluorine atoms requires the molecule to take up a twisted zigzag configuration with the fluorine atoms packed tightly around the chain. In this case steric factors affect the inherent flexibility of the chain. [Pg.62]

The different forms of carbynes were assumed to be polytypes with different numbers of carbon atoms in the chains lying parallel to the hexagonal axis and different packing arrangements of the chains within the crystallite. Heimaim et al [23] proposed that the sizes of the unit cells were determined by the spacing between kinks in extended carbon chains, Fig. 3A. They were able to correlate the Cg value for the different carbyne forms with assumed numbers of carbon atoms, n (in the range n = 6 to 12), in the linear parts of the chains. [Pg.7]

Because of the speeial atomie arrangement of the earbon atoms in a carbon nanotube, substitutional impurities are inhibited by the small size of the carbon atoms. Furthermore, the serew axis disloeation, the most eommon defeet found in bulk graphite, is inhibited by the monolayer strueture of the Cfj() nanotube. For these reasons, we expeet relatively few substitutional or struetural impurities in single-wall earbon nanotubes. Multi-wall carbon nanotubes frequently show bamboo-like defects associated with the termination of inner shells, and pentagon-heptagon (5 - 7) defects are also found frequently [7]. [Pg.69]

Shifts of Itydride between carbon atoms sqiarated by several atoms are possible if the molecular geometry is favorable. Particularly clear-cut examples have been found in medium-sized rings. For example, solvolysis of cyclononyl-l- C tosylate can be shown by degradation of the product cyclononene to occur with about 20% of the becoming located at the 5-, 6-, and 7-positions. [Pg.324]

Before we can analyze the electronic structure of a nanotube in terms of its helical symmetry, we need to find an appropriate helical operator S>(h,ip), representing a screw operation with a translation h units along the cylinder axis in conjunction with a rotation if radians about this axis. We also wish to find the operator S that requires the minimum unit cell size (i.e., the smallest set of carbon atoms needed to generate the entire nanotube using S) to minimize the computational complexity of calculating the electronic structure. We can find this helical operator by first... [Pg.38]

Figure 2 illustrates a proposed growth process[3] of a polyhedral nanoparticle, along with a nanotube. First, carbon neutrals (C and C2) and ions (C )[16] deposit, and then coagulate with each other to form small clusters on the surface of the cathode. Through an accretion of carbon atoms and coalescence between clusters, clusters grow up to particles with the size fi-... [Pg.154]

Chapters 11 and 12 both deal with C-N-E (E = S, Se, Te) heterocycles. The coverage is limited to ring systems in which the number of hetero atoms exceeds the number of carbon atoms. The topics are organized according to ring size. After a brief section on four-... [Pg.212]

Turning from chemical exchange to nuclear relaxation time measurements, the field of NMR offers many good examples of chemical information from T, measurements. Recall from Fig. 4-7 that Ti is reciprocally related to Tc, the correlation time, for high-frequency relaxation modes. For small- to medium-size molecules in the liquid phase, T, lies to the left side of the minimum in Fig. 4-7. A larger value of T, is, therefore, associated with a smaller Tc, hence, with a more rapid rate of molecular motion. It is possible to measure Ti for individual carbon atoms in a molecule, and such results provide detailed information on the local motion of atoms or groups of atoms. Levy and Nelson " have reviewed these observations. A few examples are shown here. T, values (in seconds) are noted for individual carbon atoms. [Pg.175]

Split valence basis sets allow orbitals to change size, but not to change shape. Polarized basis sets remove this limitation by adding orbitals with angular momentum beyond what is required for the ground state to the description of each atom. For example, polarized basis sets add d functions to carbon atoms and f functions to transition metals, and some of them add p functions to hydrogen atoms. [Pg.98]


See other pages where Carbon atomic size is mentioned: [Pg.103]    [Pg.314]    [Pg.2012]    [Pg.1958]    [Pg.2153]    [Pg.231]    [Pg.2133]    [Pg.2207]    [Pg.2129]    [Pg.103]    [Pg.314]    [Pg.2012]    [Pg.1958]    [Pg.2153]    [Pg.231]    [Pg.2133]    [Pg.2207]    [Pg.2129]    [Pg.855]    [Pg.519]    [Pg.1026]    [Pg.229]    [Pg.106]    [Pg.113]    [Pg.69]    [Pg.459]    [Pg.25]    [Pg.238]    [Pg.440]    [Pg.505]    [Pg.539]    [Pg.218]    [Pg.9]    [Pg.85]    [Pg.69]    [Pg.433]    [Pg.33]    [Pg.38]    [Pg.171]    [Pg.1106]    [Pg.113]    [Pg.90]    [Pg.2]   
See also in sourсe #XX -- [ Pg.876 ]




SEARCH



Atomic size

Atoms sizes

© 2024 chempedia.info