Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiation steps polymerization

In many cases, the catalyst is not able to initiate polymerization without a prior activation step. Azo or peroxy catalysts must be heated to effect dissociation. This is illustrated in Reaction 1 for 2,2 -azobisiso-butyronitrile. Decomposition produces free radicals (Reaction la) that are then capable of reacting with monomer (in this case styrene) in the polymerization-initiation step (Reaction lb) ... [Pg.234]

Cationic Polymerization Initiation steps The acidic catalyst protonates the monomer, starting the chain. [Pg.1226]

Polymerization reactions. There are two broad types of polymerization reactions, those which involve a termination step and those which do not. An example that involves a termination step is free-radical polymerization of an alkene molecule. The polymerization requires a free radical from an initiator compound such as a peroxide. The initiator breaks down to form a free radical (e.g., CH3 or OH), which attaches to a molecule of alkene and in so doing generates another free radical. Consider the polymerization of vinyl chloride from a free-radical initiator R. An initiation step first occurs ... [Pg.21]

The key initiation step in cationic polymerization of alkenes is the formation of a carbocationic intermediate, which can then interact with excess monomer to start propagation. We studied in some detail the initiation of cationic polymerization under superacidic, stable ion conditions. Carbocations also play a key role, as I found not only in the acid-catalyzed polymerization of alkenes but also in the polycondensation of arenes as well as in the ring opening polymerization of cyclic ethers, sulfides, and nitrogen compounds. Superacidic oxidative condensation of alkanes can even be achieved, including that of methane, as can the co-condensation of alkanes and alkenes. [Pg.102]

In the above examples the size of the chain can be measured by considering the number of automobile collisions that result from the first accident, or the number of fission reactions which follow from the first neutron capture. When we think about the number of monomers that react as a result of a single initiation step, we are led directly to the degree of polymerization of the resulting molecule. In this way the chain mechanism and the properties of the polymer chains are directly related. [Pg.345]

The initiators which are used in addition polymerizations are sometimes called catalysts, although strictly speaking this is a misnomer. A true catalyst is recoverable at the end of the reaction, chemically unchanged. Tliis is not true of the initiator molecules in addition polymerizations. Monomer and polymer are the initial and final states of the polymerization process, and these govern the thermodynamics of the reaction the nature and concentration of the intermediates in the process, on the other hand, determine the rate. This makes initiator and catalyst synonyms for the same material The former term stresses the effect of the reagent on the intermediate, and the latter its effect on the rate. The term catalyst is particularly common in the language of ionic polymerizations, but this terminology should not obscure the importance of the initiation step in the overall polymerization mechanism. [Pg.349]

In this section we discuss the initiation step of free-radical polymerization. This discussion is centered around initiators and their decomposition behavior. The first requirement for an initiator is that it be a source of free radicals. In addition, the radicals must be produced at an acceptable rate at convenient temperatures have the required solubility behavior transfer their activity to... [Pg.349]

Polymerization Mechanism. The mechanism that accounts for the experimental observations of oxidative coupling of 2,6-disubstituted phenols involves an initial formation of aryloxy radicals from oxidation of the phenol with the oxidized form of the copper—amine complex or other catalytic agent. The aryloxy radicals couple to form cyclohexadienones, which undergo enolization and redistribution steps (32). The initial steps of the polymerization scheme for 2,6-dimethylphenol are as in equation 6. [Pg.328]

For some apphcations, eg, foam mbber, high soHds (>60%) latices are requited. In the direct process, the polymerization conditions are adjusted to favor the production of relatively large average particle-size latices by lowering the initial emulsifier and electrolyte concentration and the water level ia the recipe, and by controlling the initiation step to produce fewer particles. Emulsifier and electrolyte are added ia increments as the polymerization progresses to control latex stabiUty. A latex of wt% soHds is obtained and concentrated by evaporation to 60—65 wt % soHds. [Pg.254]

Polymerization Initiator. Some unsaturated monomers can be polymerized through the aid of free radicals generated, as transient intermediates, in the course of a redox reaction. The electron-transfer step during the redox process causes the scission of an intermediate to produce an active free radical. The ceric ion, Ce" ", is a strong one-electron oxidizing agent that can readily initiate the redox polymerization of, for example, vinyl monomers in aqueous media at near ambient temperatures (40). The reaction scheme is... [Pg.371]

In no case was retardation or inhibition detected during the polymerization process the radical responsible for the initiation step is derived from the complex... [Pg.250]

The participation of a monomer molecule in the initiation step of polymerization has not been required in the examples described so far. Tris(thiocyanato) tris(pyri-dine) iron(III) complex forms a complex with methyl methacrylate [46]. By subjecting the compound to UV radiation, the complex decomposes to give SCN as the initiating radical. [Pg.250]

Addition polymerization is employed primarily with substituted or unsuhstituted olefins and conjugated diolefins. Addition polymerization initiators are free radicals, anions, cations, and coordination compounds. In addition polymerization, a chain grows simply hy adding monomer molecules to a propagating chain. The first step is to add a free radical, a cationic or an anionic initiator (I ) to the monomer. For example, in ethylene polymerization (with a special catalyst), the chain grows hy attaching the ethylene units one after another until the polymer terminates. This type of addition produces a linear polymer ... [Pg.304]

I Propagation Polymerization occurs when the carbon radical formed in the initiation step adds to another ethylene molecule to yield another radical. [Pg.240]

There have been a number of different synthetic approaches to substituted PTV derivatives proposed in the last decade. Almost all focus on the aromatic ring as the site for substitution. Some effort has been made to apply the traditional base-catalyzed dehydrohalogenation route to PTV and its substituted analogs. The methodology, however, is not as successful for PTV as it is for PPV and its derivatives because of the great tendency for the poly(u-chloro thiophene) precursor spontaneously to eliminate at room temperature. Swager and co-workers attempted this route to synthesize a PTV derivative substituted with a crown ether with potential applications as a sensory material (Scheme 1-26) [123]. The synthesis employs a Fager condensation [124] in its initial step to yield diol 78. Treatment with a ditosylate yields a crown ether-functionalized thiophene diester 79. This may be elaborated to dichloride 81, but pure material could not be isolated and the dichloride monomer had to be polymerized in situ. The polymer isolated... [Pg.343]

Most recent work is in accord with mechanism (b). In an effort to distinguish these mechanisms studies on model propagating species have been carried out.IS6 liW For S-MMA polymerization initiated by AIBMe- -13C (Scheme 8.13) it has been established by end group analysis that extremely small amounts of ethyl aluminum sesquichloride (<10 3M with 1.75 M monomers) are sufficient to cause a substantial enhancement in specificity for adding S in the initiation step. This result suggests that complexation of the propagating radical may be sufficient to induce alternating copolymerization but does not rule out other hypotheses. [Pg.436]

PA-6,6 is made from the relatively expensive materials hexamethylene diamine and adipic acid. An alternative synthesis of PA-6,6 from adiponitrile and hexamethylene diamine utilizing water is under investigation.16 PA-6 can be synthesized in a continuous process at atmospheric pressure, but reaction times are very long as the ring-opening initiation step is particularly slow. The reaction time can be shortened considerably by carrying out prepolymerization in the presence of excess water at pressure however, this makes the continuous polymerization process more complex. Copolymers with amide units of uniform length (diamides) are relatively new the diamide units are able to crystallize easily and have a thermally stable crystalline structure. [Pg.137]

Anionic polymerization of pivalolactone with the polystyrene anion produced only homopolymer mixtures, but the polystyrene carboxylate anion was able to give a block copolymer336. The block efficiency depends on catalyst ratio and conversion because the initiation step is slow compared with propagation337. Tough and elastic films were obtained by graft copolymerization or block copolymerization of pivalolactone onto elastomers containing tetrabutylammonium carboxylate groups338,339. ... [Pg.29]

Although the low temperature polymerization of methyl methacrylate in polar solvents such as THF was believed to proceed without termination, a more exhaustive investigation55) revealed some slow termination processes resulting from the formation of a, not yet specified agent, supposedly produced in the initiation step. Since the nature of the terminating agent is still unknown it is premature to discuss here the proposed schemes of this termination process. [Pg.108]

Chain polymerization involves three steps. To start the reaction, a catalyst that can generate an active site, such as a free radical (R ), is used. In the initiation step, the radical adds to the double bond, and the radical site is moved to the end carbon. This new radical reacts with another molecule to give a larger radical, and the propagation reaction is imderway. Usually, the number of monomers in the chain is greater than 1000. In the above formulae. [Pg.106]

F. R. Mayo (private communication) has found evidence that thermal polymerization of styrene may actually be of a higher order than second, i.e., about five-halves order. This would suggest a termolecular initiation step. Generation of a pair of monoradicals in this manner, i.e., from three monomer molecules, would be acceptable from the standpoint of energy considerations. [Pg.131]


See other pages where Initiation steps polymerization is mentioned: [Pg.236]    [Pg.14]    [Pg.156]    [Pg.357]    [Pg.358]    [Pg.190]    [Pg.190]    [Pg.243]    [Pg.424]    [Pg.742]    [Pg.743]    [Pg.148]    [Pg.157]    [Pg.58]    [Pg.138]    [Pg.517]    [Pg.665]    [Pg.661]    [Pg.226]    [Pg.87]    [Pg.50]    [Pg.51]    [Pg.8]    [Pg.107]    [Pg.482]    [Pg.308]    [Pg.4]    [Pg.224]    [Pg.60]   
See also in sourсe #XX -- [ Pg.21 ]

See also in sourсe #XX -- [ Pg.80 ]




SEARCH



Acid-initiated ring-opening polymerization step-growth process

Initiating step

Initiation step

Initiation step/initiator

Initiation steps styrene polymerization

Initiator polymeric

Step polymerization

© 2024 chempedia.info