Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Initiating step

Polymerization reactions. There are two broad types of polymerization reactions, those which involve a termination step and those which do not. An example that involves a termination step is free-radical polymerization of an alkene molecule. The polymerization requires a free radical from an initiator compound such as a peroxide. The initiator breaks down to form a free radical (e.g., CH3 or OH), which attaches to a molecule of alkene and in so doing generates another free radical. Consider the polymerization of vinyl chloride from a free-radical initiator R. An initiation step first occurs ... [Pg.21]

The initial step in the pathway is the condensation of erythrose-4-phosphale with phosphoenolpyruvate, yielding dehydroquinic acid, which by elimination of the elements of water affords dehydroshikimic acid reduction of the 3-keto group to hydroxyl gives shikimic acid. [Pg.357]

Some discontinuities may be identified by a conventional two-dimensional ultrasonic technique, from which the well-known C-scan image is the most popular. The C-scan technique is relatively easy to implement and the results from several NDE studies have been very encouraging [1]. In the case of cylindrical specimens, a circular C-scan image is convenient to show discontinuity information. The circular C-scan image shows the peak amplitude of a back-scattered pulse received in the circular array. The axial scan direction is shown as a function of transducer position in the circular array. The circular C-scan image serves also as an initial step for choosing circular B-scan profiles. The latter provides a mapping between distance to the discontinuity and transducer position in the circular array. [Pg.201]

The initial step in alkane hydrogenolysis is the dissoeiative adsorption, or reaetive stieking of the alkane. One might suspeet that this first step may be the key to the stnieture sensitivity of this reaetion over Ni surfaees. Indeed, the reaetive stieking of alkanes has been shown to depend markedly on surfaee stnieture... [Pg.948]

The Landolt reaction (iodate + reductant) is prototypical of an autocatalytic clock reaction. During the induction period, the absence of the feedback species (Irere iodide ion, assumed to have virtually zero initial concentration and fomred from the reactant iodate only via very slow initiation steps) causes the reaction mixture to become kinetically frozen . There is reaction, but the intemiediate species evolve on concentration scales many orders of magnitude less than those of the reactant. The induction period depends on the initial concentrations of the major reactants in a maimer predicted by integrating the overall rate cubic autocatalytic rate law, given in section A3.14.1.1. [Pg.1097]

Breton J, Martin J-L, Fleming G R and Lambry J-C 1988 Low-temperature femtosecond spectroscopy of the initial step of electron transfer in reaction centers from photosynthetic purple bacteria Biochemistry 27 8276... [Pg.1999]

The electron density, pj, of the embedded cluster/adsorbate atoms is calculated using quantum chemistry methods (HF, PT, multireference SCF, or Cl). The initial step in this iterative procedure sets to zero,... [Pg.2227]

The initial step is to identify which database, from a few thousands worldwide (about 10 000 in 2002), provides the requested information. The next step is to determine which subsection of the topic is of interest, and to identify typical search terms or keywords (synonyms, homonyms, different languages, or abbreviations) (Table 5-1). During the search in a database, this strategy is then executed (money is charged for spending time on some chemical databases). The resulting hits may be further refined by combining keywords or database fields, respectively, with Boolean operators (Table 5-2). The final results should be saved in electronic or printed form. [Pg.230]

Living calculated the integrals, we are now ready to start the SCF calculation. To formulate the Fock mahix it is necessary to have an initial guess of the density matrix, P. The simplest approach is to use the null matrix in which all elements are zero. In this initial step the Fock nulrix F is therefore equal to... [Pg.83]

Fig. 6.9 Variation in mean squared displacement during the initial steps of a molecular dynamics simulation of argon. Fig. 6.9 Variation in mean squared displacement during the initial steps of a molecular dynamics simulation of argon.
The key initiation step in cationic polymerization of alkenes is the formation of a carbocationic intermediate, which can then interact with excess monomer to start propagation. We studied in some detail the initiation of cationic polymerization under superacidic, stable ion conditions. Carbocations also play a key role, as I found not only in the acid-catalyzed polymerization of alkenes but also in the polycondensation of arenes as well as in the ring opening polymerization of cyclic ethers, sulfides, and nitrogen compounds. Superacidic oxidative condensation of alkanes can even be achieved, including that of methane, as can the co-condensation of alkanes and alkenes. [Pg.102]

In Grignard reactions, Mg(0) metal reacts with organic halides of. sp carbons (alkyl halides) more easily than halides of sp carbons (aryl and alkenyl halides). On the other hand. Pd(0) complexes react more easily with halides of carbons. In other words, alkenyl and aryl halides undergo facile oxidative additions to Pd(0) to form complexes 1 which have a Pd—C tr-bond as an initial step. Then mainly two transformations of these intermediate complexes are possible insertion and transmetallation. Unsaturated compounds such as alkenes. conjugated dienes, alkynes, and CO insert into the Pd—C bond. The final step of the reactions is reductive elimination or elimination of /J-hydro-gen. At the same time, the Pd(0) catalytic species is regenerated to start a new catalytic cycle. The transmetallation takes place with organometallic compounds of Li, Mg, Zn, B, Al, Sn, Si, Hg, etc., and the reaction terminates by reductive elimination. [Pg.125]

Each chlorine atom formed m the initiation step has seven valence electrons and IS very reactive Once formed a chlorine atom abstracts a hydrogen atom from methane as shown m step 2 m Figure 4 21 Hydrogen chloride one of the isolated products from... [Pg.172]

Can you write an equation for the initiation step that precedes these propagation steps ... [Pg.396]

In the above examples the size of the chain can be measured by considering the number of automobile collisions that result from the first accident, or the number of fission reactions which follow from the first neutron capture. When we think about the number of monomers that react as a result of a single initiation step, we are led directly to the degree of polymerization of the resulting molecule. In this way the chain mechanism and the properties of the polymer chains are directly related. [Pg.345]

The initiators which are used in addition polymerizations are sometimes called catalysts, although strictly speaking this is a misnomer. A true catalyst is recoverable at the end of the reaction, chemically unchanged. Tliis is not true of the initiator molecules in addition polymerizations. Monomer and polymer are the initial and final states of the polymerization process, and these govern the thermodynamics of the reaction the nature and concentration of the intermediates in the process, on the other hand, determine the rate. This makes initiator and catalyst synonyms for the same material The former term stresses the effect of the reagent on the intermediate, and the latter its effect on the rate. The term catalyst is particularly common in the language of ionic polymerizations, but this terminology should not obscure the importance of the initiation step in the overall polymerization mechanism. [Pg.349]

In this section we discuss the initiation step of free-radical polymerization. This discussion is centered around initiators and their decomposition behavior. The first requirement for an initiator is that it be a source of free radicals. In addition, the radicals must be produced at an acceptable rate at convenient temperatures have the required solubility behavior transfer their activity to... [Pg.349]

Fig. 2. Initial steps in the biodegradation of linear and cychc alkanes. Fig. 2. Initial steps in the biodegradation of linear and cychc alkanes.
Fig. 3. Initial steps in the aerobic degradation of naphthalene, as a representative multiringed aromatic, and toluene. The different initial steps of toluene... Fig. 3. Initial steps in the aerobic degradation of naphthalene, as a representative multiringed aromatic, and toluene. The different initial steps of toluene...
Fig. 4. Proposed initial steps in the anaerobic biodegradation of toluene in different organisms. Fig. 4. Proposed initial steps in the anaerobic biodegradation of toluene in different organisms.
Under identical conditions, OX was approximately ten times as reactive as its isomers. It was proposed that the initial steps in the mechanisms of formation of each isomer ate the same. [Pg.413]

Some details of the chain-initiation step have been elucidated. With an oxygen radical-initiator such as the /-butoxyl radical, both double bond addition and hydrogen abstraction are observed. Hydrogen abstraction is observed at the ester alkyl group of methyl acrylate. Double bond addition occurs in both a head-to-head and a head-to-tail manner (80). [Pg.165]

There are numerous variations of the wet process, but all involve an initial step in which the ore is solubilized in sulfuric acid, or, in a few special instances, in some other acid. Because of this requirement for sulfuric acid, it is obvious that sulfur is a raw material of considerable importance to the fertilizer industry. The acid—rock reaction results in formation of phosphoric acid and the precipitation of calcium sulfate. The second principal step in the wet processes is filtration to separate the phosphoric acid from the precipitated calcium sulfate. Wet-process phosphoric acid (WPA) is much less pure than electric furnace acid, but for most fertilizer production the impurities, such as iron, aluminum, and magnesium, are not objectionable and actually contribute to improved physical condition of the finished fertilizer (35). Impurities also furnish some micronutrient fertilizer elements. [Pg.224]

A flow sheet of a typical steam granulation plant is shown in Figure 16. Initial steps are cmshing, screening, proportioning, and blending of the dry... [Pg.233]

The fluorination reaction is best described as a radical-chain process involving fluorine atoms (19) and hydrogen abstraction as the initiation step. If the molecule contains unsaturation, addition of fluorine also takes place (17). Gomplete fluorination of complex molecules can be conducted using this method (see Fluorine compounds, organic-direct fluorination). [Pg.268]

The two possible initiations for the free-radical reaction are step lb or the combination of steps la and 2a from Table 1. The role of the initiation step lb in the reaction scheme is an important consideration in minimising the concentration of atomic fluorine (27). As indicated in Table 1, this process is spontaneous at room temperature [AG25 = —24.4 kJ/mol (—5.84 kcal/mol) ] although the enthalpy is slightly positive. The validity of this step has not yet been conclusively estabUshed by spectroscopic methods which makes it an unsolved problem of prime importance. Furthermore, the fact that fluorine reacts at a significant rate with some hydrocarbons in the dark at temperatures below —78° C indicates that step lb is important and may have Httie or no activation energy at RT. At extremely low temperatures (ca 10 K) there is no reaction between gaseous fluorine and CH or 2 6... [Pg.275]

A simple equihbrium calculation reveals that, at 25°C and atmospheric pressure, fluorine is less than 1% dissociated, whereas at 325°C an estimated 4.6% dissociation of molecular fluorine is calculated. Obviously, less than 1% of the coUisions occurring at RT would result in reaction if step la were the only important initiation step. At 325°C the fluorine atom initiation step should become more important. From the viewpoint of energy control, as shown in Table 1, it would be advantageous to have step lb predominate over step 2a and promote attack by molecular rather than atomic fluorine. Ambient or lower temperatures keep the atomic fluorine concentration low. [Pg.275]

The capture of solar energy as fixed carbon in biomass via photosynthesis is the initial step in the growth of biomass. It is depicted by the equation... [Pg.9]

An alternative starting network is one without stream spHts. The networks from the TI method maximize energy recovery and may introduce heat-load loops. Stream spHts ate not made in the initial steps of network invention. The ED method is proposed to be one in which heuristic rules and strategies would be used to improve the networks developed by the TI method. The importance of a thermodynamic base for evolutionary rules is stressed in this proposal, but there is no expHcit guidance for the evolutionary process. [Pg.525]


See other pages where Initiating step is mentioned: [Pg.791]    [Pg.1201]    [Pg.2748]    [Pg.2987]    [Pg.66]    [Pg.58]    [Pg.460]    [Pg.547]    [Pg.167]    [Pg.172]    [Pg.173]    [Pg.181]    [Pg.1286]    [Pg.58]    [Pg.815]    [Pg.33]    [Pg.158]    [Pg.167]    [Pg.307]    [Pg.275]   
See also in sourсe #XX -- [ Pg.522 ]




SEARCH



Acid-initiated ring-opening polymerization step-growth process

Activated monomer mechanism Initiation step

Alkyl hydroperoxides initiation steps

Alkylation initiation step

Allylic alcohols 316 Chain initiating step

Assessing the Patient Initial Steps

Catalytic Mechanisms initiation step

Chain-initiating step

Defined with fast initial step

Defined with slow initial step

Elementary steps initiation

Fast Initial Step

Fluorination, chain-initiating step

Heck possible initial reaction steps

Initial Steps - Experimental Results

Initial step in degradation

Initiation step

Initiation step

Initiation step photo-oxidative degradation

Initiation step, chain reactions

Initiation step, metallacyclic intermediate

Initiation step, radical chain reaction

Initiation step/initiator

Initiation step/initiator

Initiation steps autooxidation

Initiation steps chlorination

Initiation steps defined

Initiation steps styrene polymerization

Kinetics initiation step

Kinetics slow initiation step

Mechanisms with a Fast Initial Step

Mechanisms with a Slow Initial Step

Metathesis initiation step

Oxidative activation initial step

Palladium possible initial reaction steps

Polymerization initiation step

Protein initial steps

Radical reaction initiation steps

Radical-nucleophilic aromatic substitution initiation step

Reaction mechanisms initiation steps

Reaction mechanisms with fast initial step

Reaction mechanisms with slow initial step

SrnI process, initiation step

Step initiation rate

The initiation step

Transcription initiation steps

Tray Sizing Example and Initial Steps

© 2024 chempedia.info