Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyesters determination

Yoshikawa Y, Ofuji N, Imaizumi M, Moteki Y, Fujimaki T (1996) Molecular weight distribution and branched structure of biodegradable aliphatic polyesters determined by s.e.c-MALLS. Polymer 37 1281... [Pg.312]

Condensation polymers such as polyesters and polyamides are especially well suited to this method of molecular weight determination. For one thing, the molecular weight of these polymers is usually less than for addition polymers. Even more pertinent to the method is the fact that the chain ends in these molecules consist of unreacted functional groups. Using polyamides as an example, we can readily account for the following possibilities ... [Pg.30]

Specifications and Analytical Methods. Butanediol is specified as 99.5% minimum pure, determined by gas chromatography (gc), sohdifying at 19.6°C minimum. Moisture is 0.04% maximum, determined by Kad-Fischer analysis (dkecdy or of a toluene a2eotrope). The color is APHA 5 maximum, and the Hardy color (polyester test) is APHA 200 maximum. The carbonyl number is 0.5 mg KOH/g maximum the acetal content can also be measured dkecdy by gc. [Pg.109]

Polyester composition can be determined by hydrolytic depolymerization followed by gas chromatography (28) to analyze for monomers, comonomers, oligomers, and other components including side-reaction products (ie, DEG, vinyl groups, aldehydes), plasticizers, and finishes. Mass spectroscopy and infrared spectroscopy can provide valuable composition information, including end group analysis (47,101,102). X-ray fluorescence is commonly used to determine metals content of polymers, from sources including catalysts, delusterants, or tracer materials added for fiber identification purposes (28,102,103). [Pg.332]

THPC—Amide—PoIy(vinyI bromide) Finish. A flame retardant based on THPC—amide plus poly(vinyl bromide) [25951-54-6] (143) has been reported suitable for use on 35/65, and perhaps on 50/50, polyester—cotton blends. It is appUed by the pad-dry-cure process, with curing at 150°C for about 3 min. A typical formulation contains 20% THPC, 3% disodium hydrogen phosphate, 6% urea, 3% trimethylolglycouril [496-46-8] and 12% poly(vinyl bromide) soUds. Approximately 20% add-on is required to impart flame retardancy to a 168 g/m 35/65 polyester—cotton fabric. Treated fabrics passed the FF 3-71 test. However, as far as can be determined, poly(vinyl bromide) is no longer commercially available. [Pg.491]

The relative effectiveness of nucleating agents in a polymer can be determined by measuring recrystallization exotherms of samples molded at different temperatures (105). The effect of catalyst concentration and filler content has been determined on unsaturated polyesters by using dynamic thermal techniques (124). Effects of formulation change on the heat of mbber vulcanization can be determined by dsc pressurized cells may be needed to reduce volatilization during the cure process (125). [Pg.150]

Performance Characteristics Polyester resins undergo a rapid transformation from a viscous Hquid to a soHd plastic state that comprises a three-dimensional cross-linked polymer stmcture. The level of polyester polymer unsaturation determines essential performance characteristics (Table 7), although polymer components can influence subtle features that affect thermal, electrical, and mechanical performance as defined by ASTM procedures. [Pg.320]

The minimum service temperature is determined primarily by the Tg of the soft phase component. Thus the SBS materials ctm be used down towards the Tg of the polybutadiene phase, approaching -100°C. Where polyethers have been used as the soft phase in polyurethane, polyamide or polyester, the soft phase Tg is about -60°C, whilst the polyester polyurethanes will typically be limited to a minimum temperature of about 0°C. The thermoplastic polyolefin rubbers, using ethylene-propylene materials for the soft phase, have similar minimum temperatures to the polyether-based polymers. Such minimum temperatures can also be affected by the presence of plasticisers, including mineral oils, and by resins if these become incorporated into the soft phase. It should, perhaps, be added that if the polymer component of the soft phase was crystallisable, then the higher would also affect the minimum service temperature, this depending on the level of crystallinity. [Pg.876]

Plasticizers can be classified according to their chemical nature. The most important classes of plasticizers used in rubber adhesives are phthalates, polymeric plasticizers, and esters. The group phthalate plasticizers constitutes the biggest and most widely used plasticizers. The linear alkyl phthalates impart improved low-temperature performance and have reduced volatility. Most of the polymeric plasticizers are saturated polyesters obtained by reaction of a diol with a dicarboxylic acid. The most common diols are propanediol, 1,3- and 1,4-butanediol, and 1,6-hexanediol. Adipic, phthalic and sebacic acids are common carboxylic acids used in the manufacture of polymeric plasticizers. Some poly-hydroxybutyrates are used in rubber adhesive formulations. Both the molecular weight and the chemical nature determine the performance of the polymeric plasticizers. Increasing the molecular weight reduces the volatility of the plasticizer but reduces the plasticizing efficiency and low-temperature properties. Typical esters used as plasticizers are n-butyl acetate and cellulose acetobutyrate. [Pg.626]

The crystallization kinetics defines the open time of the bond. For automated industrial processes, a fast crystallizing backbone, such as hexamethylene adipate, is often highly desirable. Once the bond line cools, crystallization can occur in less than 2 min. Thus, minimal time is needed to hold or clamp the substrates until fixturing strength is achieved. For specialty or non-automated processes, the PUD backbone might be based on a polyester polyol with slow crystallization kinetics. This gives the adhesive end user additional open time, after the adhesive has been activated, in which to make the bond. The crystallization kinetics for various waterborne dispersions were determined by Dormish and Witowski by following the Shore hardness. Open times of up to 40 min were measured [60]. [Pg.791]

Operating conditions are important determinants of the choice of fabric. Some fabrics (e.g., polyolefins, nylons, acrylics, polyesters) are useful only at relatively low temperatures of 95 to 150°C (200 to 300°F). For high-temperature flue gas streams, more thermally stable fabrics such as fiberglass. Teflon, or Nomex must be used. [Pg.408]

Differential scanning calorimetry (DSC) is fast, sensitive, simple, and only needs a small amount of a sample, therefore it is widely used to analyze the system. For example, a polyester-based TPU, 892024TPU, made in our lab, was blended with a commercial PVC resin in different ratios. The glass transition temperature (Tg) values of these systems were determined by DSC and the results are shown in Table 1. [Pg.138]

Polyester fibers contain crystalline as well as noncrystalline regions. The degree of crystallinity and molecular orientation are important in determining the tensile strength of the fiber (between 18-22 denier) and its shrinkage. The degree of crystallinity and molecular orientation can be determined by X-ray diffraction techniques. ... [Pg.362]

The highest mechanical strengths are usually obtained when the fibre is used in fine fabric form but for many purposes the fibres may be used in mat form, particularly glass fibre. The chemical properties of the laminates are largely determined by the nature of the polymer but capillary attraction along the fibre-resin interface can occur when some of these interfaces are exposed at a laminate surface. In such circumstances the resistance of both reinforcement and matrix must be considered when assessing the suitability of a laminate for use in chemical plant. Glass fibres are most commonly used for chemical plant, in conjunction with phenolic resins, and the latter with furane, epoxide and, sometimes, polyester resins. [Pg.921]

The current-carrying capacity of the wire is not directly related to the dielectric. This is determined by the conductor resistance and the heating effect that it produces in the wire. The required current-carrying capacity determines the size of the wire and thus the size of the insulator. The temperature rise caused by the current flow determines the type of insulation to be used. If the wire is limited to 140°F (60°C) service, the insulation can be one of those discussed above. If the wire is to operate at 300°F (150° C), another specification for plastic wire with better heat resistance such as TP polyester or PTFE is used. [Pg.224]

Fiery1 252-254) studied only the last stage of the reactions, i.e. when the concentration of reactive end groups has been greatly decreased and when the dielectric properties of the medium (ester or polyester) no longer change with conversion. Under these conditions, he showed that the overall reaction order relative to various model esterifications and polyesterifications is 3. As a general rule, it is accepted that the order with respect to acid is two which means that the add behaves both as reactant and as catalyst. However, the only way to determine experimentally reaction orders with respect to add and alcohol would be to carry out kinetic studies on non-stoichiometric systems. [Pg.75]

Determination of Polyols in Alkyd and Polyester Resins by Gas Liquid Chromatography , Rept No CCL-214, APG (1966)... [Pg.818]

For this case, which is the fairly common situation of a biaxially oriented film, it is therefore necessary to obtain a total of thirteen second and fourth order coefficients. Later, results for polyester films will be discussed, where seven of these thirteen coefficients have been determined experimentally. [Pg.88]

Amorphous bisphenol-A polyarylates are soluble in dioxane and in chlorinated solvents such as CH2C12, 1,2-dichlororethane, 1,1,2-trichloroethane, and 1,1,2,2-tetrachloroethane while semicrystalline and liquid crystalline wholly aromatic polyesters are only sparingly soluble in solvents such as tetrachloroethane-phenol mixtures or pentafluorophenol, which is often used for inherent viscosity determinations. [Pg.91]

The — CH2— COO and —COO—CH2 methylene protons present resonances in the 2.1-2.4- and 4.0-4.3-ppm ranges, respectively. The peaks of -CH2OH endgroup methylenes appear close to 3.8 ppm in most aliphatic polyesters and can be used for the determination of the OH endgroup content. In the spec-tra of PET recorded in CD2CI2/CF3CO2D, these peaks (a triplet) are shifted to... [Pg.93]

Thus, a polyester sample (1-3 g, exactly weighed) is dissolved in 25 mL of a titrated solution of acetic anhydride in dry pyridine (10% mass). The solution is heated to reflux for 1 h. After cooling, 50 mL pyridine and 10 mL water are added. The excess acetic acid present in the resulting solution is titrated by aqueous potassium hydroxide (0.5 mol/L) using a potentiometric titrator. The determination must be carried out in duplicate and a blank titration must be performed under the same conditions. The mass of polyester and the concentration of reactants should be adjusted to ensure that at least a fourfold excess of acetic anhydride is used. The final result (OH content) is expressed in mmol OH/g polyester or as the hydroxyl number, defined as the number of milligrams of KOH required to neutralize the acetic acid consumed per gram of polyester. [Hydroxyl number = (number of mmol OH/g polyester) x 56.106.]... [Pg.94]

Note Kricheldorf et al.268 synthesized the same polyester by a similar procedure using Ti(OPr)4 as polymerization catalyst. The characteristics of the resulting polymer were inherent viscosity 0.22 dL/g (determined at 20°C in 4/1 CH2C12-trifluoroacetic acid at a concentration of 0.2 g/dL). DSC Tg = 164°C. Degree of branching (DB) 0.48 (determined by H NMR). [Pg.116]


See other pages where Polyesters determination is mentioned: [Pg.70]    [Pg.129]    [Pg.3]    [Pg.324]    [Pg.365]    [Pg.70]    [Pg.129]    [Pg.3]    [Pg.324]    [Pg.365]    [Pg.332]    [Pg.332]    [Pg.148]    [Pg.247]    [Pg.294]    [Pg.306]    [Pg.90]    [Pg.364]    [Pg.365]    [Pg.17]    [Pg.902]    [Pg.587]    [Pg.275]    [Pg.262]    [Pg.426]    [Pg.84]    [Pg.100]    [Pg.29]    [Pg.59]    [Pg.67]    [Pg.94]    [Pg.110]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Thermodynamic miscibility determination of TLCP and polyesters

© 2024 chempedia.info