Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pressure cell

Neumann has adapted the pendant drop experiment (see Section II-7) to measure the surface pressure of insoluble monolayers [70]. By varying the droplet volume with a motor-driven syringe, they measure the surface pressure as a function of area in both expansion and compression. In tests with octadecanol monolayers, they found excellent agreement between axisymmetric drop shape analysis and a conventional film balance. Unlike the Wilhelmy plate and film balance, the pendant drop experiment can be readily adapted to studies in a pressure cell [70]. In studies of the rate dependence of the molecular area at collapse, Neumann and co-workers found more consistent and reproducible results with the actual area at collapse rather than that determined by conventional extrapolation to zero surface pressure [71]. The collapse pressure and shape of the pressure-area isotherm change with the compression rate [72]. [Pg.114]

A tremendous amount of work has been done to delineate the detailed reaction mechanisms for many catalytic reactions on well characterized surfaces [1, 45]. Many of tiiese studies involved impinging molecules onto surfaces at relatively low pressures, and then interrogating the surfaces in vacuum with surface science teclmiques. For example, a usefiil technique for catalytic studies is TPD, as the reactants can be adsorbed onto the sample in one step, and the products fonned in a second step when the sample is heated. Note that catalytic surface studies have also been perfonned by reacting samples in a high-pressure cell, and then returning them to vacuum for measurement. [Pg.302]

New metliods appear regularly. The principal challenges to the ingenuity of the spectroscopist are availability of appropriate radiation sources, absorption or distortion of the radiation by the windows and other components of the high-pressure cells, and small samples. Lasers and synchrotron radiation sources are especially valuable, and use of beryllium gaskets for diamond-anvil cells will open new applications. Impulse-stimulated Brillouin [75], coherent anti-Stokes Raman [76, 77], picosecond kinetics of shocked materials [78], visible circular and x-ray magnetic circular dicliroism [79, 80] and x-ray emission [72] are but a few recent spectroscopic developments in static and dynamic high-pressure research. [Pg.1961]

Jayaraman A 1984 The diamond-anvil high-pressure cell Sc/. Am. 250 54... [Pg.1963]

Quednau J and Schneider G M 1989 A new high-pressure cell for differential pressure-jump experiments using optical detection Rev. Sc/. Instnim. 60 3685-7... [Pg.2969]

The relative effectiveness of nucleating agents in a polymer can be determined by measuring recrystallization exotherms of samples molded at different temperatures (105). The effect of catalyst concentration and filler content has been determined on unsaturated polyesters by using dynamic thermal techniques (124). Effects of formulation change on the heat of mbber vulcanization can be determined by dsc pressurized cells may be needed to reduce volatilization during the cure process (125). [Pg.150]

At high pressure experiments the reactor should be installed in a pressure cell. All check valves before it, and the filter with the flow controller after it, can be kept in the vented operating room. As a minimum, the bypass valve and the flow controller must be accessible to the operator. This can be done by extended valve stems that reach through the protecting wall. Both the operating room and the pressure cell should be well ventilated and equipped by CO alarm instruments. [Pg.86]

Please notice that in a well-ventilated laboratory and a pressure cell, these experiments can be executed safely. In seven years of graduate research activity at the Chemical Engineering Department of the University of Akron, only one catalyst ignition and one real CO alarm occurred. Several false CO alarms were sounded until someone noticed that they always happened about 2 30 PM. As it turned out, one maintenance employee parked his old car right in front of the air intake to the lab ventilation. He warmed up his car for a while before he started to go home after his shift, and the motor exhaust gas set off the false alarms. [Pg.89]

Differential pressure cell P305D Valedyne Corp. [Pg.90]

Valedyne differential pressure cell. 91 vapor phase hydrogenation... [Pg.260]

A sample holder, including optics for focusing the incident light and collecting the luminescence. Efficient light collection is important, and the sample holder may need to allow for a cryostat, pressure cell, magnet, or electrical contacts. [Pg.382]

Because Raman spectroscopy requires one only to guide a laser beam to the sample and extract a scattered beam, the technique is easily adaptable to measurements as a function of temperature and pressure. High temperatures can be achieved by using a small furnace built into the sample compartment. Low temperatures, easily to 78 K (liquid nitrogen) and with some diflSculty to 4.2 K (liquid helium), can be achieved with various commercially available cryostats. Chambers suitable for Raman spectroscopy to pressures of a few hundred MPa can be constructed using sapphire windows for the laser and scattered beams. However, Raman spectroscopy is the characterizadon tool of choice in diamond-anvil high-pressure cells, which produce pressures well in excess of 100 GPa. ... [Pg.434]

Another major difference between the use of X rays and neutrons used as solid state probes is the difference in their penetration depths. This is illustrated by the thickness of materials required to reduce the intensity of a beam by 50%. For an aluminum absorber and wavelengths of about 1.5 A (a common laboratory X-ray wavelength), the figures are 0.02 mm for X rays and 55 mm for neutrons. An obvious consequence of the difference in absorbance is the depth of analysis of bulk materials. X-ray diffraction analysis of materials thicker than 20—50 pm will yield results that are severely surface weighted unless special conditions are employed, whereas internal characteristics of physically large pieces are routinely probed with neutrons. The greater penetration of neutrons also allows one to use thick ancillary devices, such as furnaces or pressure cells, without seriously affecting the quality of diffraction data. Thick-walled devices will absorb most of the X-ray flux, while neutron fluxes hardly will be affected. For this reason, neutron diffraction is better suited than X-ray diffraction for in-situ studies. [Pg.651]

Onion-like graphitic clusters have also been generated by other methods (a) shock-wave treatment of carbon soot [16] (b) carbon deposits generated in a plasma torch[17], (c) laser melting of carbon within a high-pressure cell (50-300 kbar)[l8]. For these three cases, the reported graphitic particles display a spheroidal shape. [Pg.164]

Pressure signal transmission—the differential pressure cell... [Pg.237]

Figure 6.11. Intelligent differential-pressure cell with transmitter... Figure 6.11. Intelligent differential-pressure cell with transmitter...
Differential pressure cells 237, 239 Diffuse radiation 439 Diffusion 59, 573... [Pg.873]

FIGURE 23.15 Typical pressure cells as used for high-pressure absorption testing (before insulation applied). [Pg.650]

Some techniques to produce small, mainly unilamellar vesicles from MLV (sonication, French pressure cell) are discussed below in separate paragraphs. [Pg.264]

A French pressure cell can be used to reduce the size of MLV by extrusion under high pressure. Four extrusions of egg PC-MLV at 4°C resulted in the formation of small unilamellar vesicles 94% of the lipid was found in 31- to 52-nm vesicles (Barenholz et al., 1979). [Pg.271]

Figure 1 shows two reactor configurations we have used to measure reaction rates on clean surfaces. In Figure 1(a) is shown a high pressure cell inside the UHV system ( ) with the sample mounted on a bellows so it can be moved between the reaction cell and the position used for AES analysis. In Figure 1(h) is shown a reaction cell outside the analysis system with the sample translated between heating leads in the reactor and in the UHV analysis system ( ). [Pg.179]

Figure 6.13 Flow restrictors of different design A, linear B, tapered C, integral and D, frit. On the right side is shown a modified high pressure cell for UV detection using open tubular columns. Figure 6.13 Flow restrictors of different design A, linear B, tapered C, integral and D, frit. On the right side is shown a modified high pressure cell for UV detection using open tubular columns.

See other pages where Pressure cell is mentioned: [Pg.939]    [Pg.939]    [Pg.939]    [Pg.1958]    [Pg.561]    [Pg.70]    [Pg.1751]    [Pg.91]    [Pg.129]    [Pg.392]    [Pg.300]    [Pg.239]    [Pg.36]    [Pg.42]    [Pg.57]    [Pg.645]    [Pg.650]    [Pg.653]    [Pg.285]    [Pg.155]    [Pg.65]    [Pg.73]    [Pg.324]    [Pg.121]    [Pg.131]    [Pg.477]    [Pg.79]    [Pg.79]   
See also in sourсe #XX -- [ Pg.74 ]

See also in sourсe #XX -- [ Pg.39 ]

See also in sourсe #XX -- [ Pg.296 , Pg.297 , Pg.298 , Pg.299 , Pg.315 ]




SEARCH



© 2024 chempedia.info