Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

CONTENTS 4 Acetals

Dissolve 0 3 ml. of glacial acetic acid in 2 ml. of water in a 25 ml. conical flask, and add 0 4 ml. (0 44 g.) of phenylhydrazine. Mix thoroughly to obtain a clear solution of phenylhydrazine acetate and then add 0 2 ml. (0 21 g.) of benzaldehyde. Cork the flask securely and shake the contents vigorously. A yellow crystalline mass of the hydrazone soon begins to separate. Allow to stand for 15 minutes, with occasional shaking, and then filter the solid product at the pump, wash first with very dilute acetic acid and then with water, and finally drain thoroughly. Recrystallise the material from rectified or methylated spirit, the benzaldehyde phenylhydrazone being thus obtained in fine colourless needles, m.p. 157 yield, 0 4 g. [Pg.229]

Aldehydes and ketones may frequently be identified by their semicarbazones, obtained by direct condensation with semicarbazide (or amino-urea), NH,NHCONH a compound which is a monacidic base and usually available as its monohydrochloride, NHjCONHNH, HCl. Semicarbazones are particularly useful for identification of con jounds (such as acetophenone) of which the oxime is too soluble to be readily isolated and the phenylhydrazone is unstable moreover, the high nitrogen content of semicarbazones enables very small quantities to be accurately analysed and so identified. The general conditions for the formation of semicarbazones are very similar to those for oximes and phenylhydrazones (pp. 93, 229) the free base must of course be liberated from its salts by the addition of sodium acetate. [Pg.258]

Dissolve 1 g. of anthracene in 10 ml. of glacial acetic acid and place in 50 ml. bolt head flask fitted with a reflux water-condenser. Dissolve 2 g. of chromium trioxide in 2 ml. of water and add 5 ml. of glacial acetic acid. Pour this solution down the condenser, shake the contents of the flask and boil gently for 10 minutes. Cool and pour the contents of the flask into about 20 ml. of cold water. Filter off the crude anthraquinone at the pump, wash with water, drain well and dry. Yield, 1 g. Purify by re crystallisation from glacial acetic acid or by sublimation using the semi-micro sublimation apparatus (Fig. 35, p. 62, or Fig. 50, p. 70). [Pg.261]

Saccharic acid. Use the filtrate A) from the above oxidation of lactose or, alternatively, employ the product obtained by evaporating 10 g. of glucose with 100 ml. of nitric acid, sp. gr. 1 15, until a syrupy residue remains and then dissolving in 30 ml. of water. Exactly neutralise at the boiling point with a concentrated solution of potassium carbonate, acidify with acetic acid, and concentrate again to a thick syrup. Upon the addition of 50 per cent, acetic acid, acid potassium saccharate sepa rates out. Filter at the pump and recrystaUise from a small quantity of hot water to remove the attendant oxahc acid. It is necessary to isolate the saccharic acid as the acid potassium salt since the acid is very soluble in water. The purity may be confirmed by conversion into the silver salt (Section 111,103) and determination of the silver content by ignition. [Pg.453]

Equip a I litre three-necked flask with a mechanical stirrer and a thermometer, and immerse the flask in a bath of ice and salt. Place 306 g. (283 ml.) of acetic anhydride, 300 g. (285 ml.) of glacial acetic acid and 25 g. of p-nitrotoluene in the flask, and add slowly, with stirring, 42 5 ml. of concentrated sulphuric acid. When the temperature has fallen to 5°, introduce 50 g. of A.R. chromic anhydride in small portions at such a rate that the temperature does not rise above 10° continue the stirring for 10 minutes after all the chromium trioxide has been added. Pour the contents of the flask into a 3 litre beaker two-thirds filled with crushed ice and almost fill the beaker with cold water. Filter the solid at the pump and wash it with cold water until the washings are colourless. Suspend the product in 250 ml. of cold 2 per cent, sodium carbonate solution and stir mechanically for 10-15 minutes filter (1), wash with cold water, and finally with 10 ml. of alcohol. Dry in a vacuum desiccator the yield of crude p-nitrobenzal diacetate is 26 g. (2),... [Pg.695]

Place 52 g, of anthraquinone, 50 g. of granulated tin and 375 ml. of glacial acetic acid in a 1 htre round-bottomed flask fitted with a reflux condenser. Heat the contents of the flask to boihng and add 125 ml, of... [Pg.740]

To determine the exact peroxide content of benzoyl peroxide (and of other organic peroxides) the following procedure may be employed. Place about 0 05 g. of the sample of peroxide in a glass-stoppered conical flask add 5-10 ml. of acetic anhydride (A.R. or other pure grade) and 1 g. of powdered sodium iodide. Swirl the mixture to dissolve the sodium iodide and allow the solution to stand for 5-20 minutes. Add 50-75 ml. of water, shake the mixture vigorously for about 30 seconds, and titrate the liberated iodine with standard sodium thiosulphate solution using starch as indicator. [Pg.808]

To determine the exact perbenzoic acid content of the solution, proceed as follows. Dissolve 1 -5 g. of sodium iodide in 50 ml. of water in a 250 ml. reagent bottle and add about 5 ml. of glacial acetic acid and 5 ml. of chloroform. Introduce a known weight or volume of the chloroform solution of perbenzoic acid and shake vigorously. Titrate the liberated iodine with standard O lA sodium thiosulphate solution in the usual manner. [Pg.809]

Azlactone of a-benzoylaminocinnamic acid. Place a mi.xture of 27 g. (26 ml.) of redistilled benzaldehyde, 45 g. of Mppuric acid (Section IV,54), 77 g. (71-5) ml. of acetic anhydride and 20-5 g. of anhydrous sodium acetate in a 500 ml. conical flask and heat on an electric hot plate with constant shaking. As soon as the mixture has liquefied completely, transfer the flask to a water bath and heat for 2 hours. Then add 100 ml. of alcohol slowly to the contents of the flask, allow the mixture to stand overnight, filter the crystalline product with suction, wash with two 25 ml. portions of ice-cold alcohol and then wash with two 25 ml. portions of boiling water dry at 100°. The yield of almost pure azlactone, m.p. 165-166°, is 40 g. Recrystallisation from benzene raises the m.p. to 167-168°. [Pg.910]

Sebacic acid. Dissolve 40 g. of methyl hydrogen adipate in 100 ml. of absolute methanol to which 01 g. of sodium has been added. Pass a current of about 2 0 amps, until the pH of the solution is about 8 (ca. 5 hours) test with B.D.H. narrow-range indicator paper. Transfer the contents of the electrolysis cell to a 500 ml. round-bottomed flask, render neutral with a little acetic acid, and distil off the methanol on a water... [Pg.939]

Myristic acid from hexanoic acid and methyl hydrogen sebacate). Dissolve 23 -2 g. of redistilled hexanoic acid (re caproic acid), b.p. 204-6-205-5°/760 mm., and 21-6 g. of methyl hydrogen sebacate in 200 ml. of absolute methanol to which 0 13 g. of sodium has been added. Electrolyse at 2 0 amps., whilst maintaining the temperature between 30° and 40°, until the pH is about 8 0 (ca. 6 hours). Neutralise the contents of the electrolysis cell with a little acetic acid and distil off the methyl alcohol on a water bath. Dissolve the residue in 200 ml. of ether, wash with three 50 ml. portions of saturated sodium bicarbonate solution, once with water, dry with anhydrous magnesium sulphate, and distil with the aid of a fractionating column (see under Methyl hydrogen adipate). Collect the re-decane at 60°/10 mm. (3 0 g.), the methyl myristate at 158-160°/ 10 mm. (12 5g.) and dimethyl hexadecane-1 16-dicarboxylate at 215-230°/ 7 mm. (1 -5 g.)... [Pg.940]

Dissolve 14 g. of p-phenetidine (2) in 240 ml. of water to which 20 ml. of 5N hydrochloric acid (or 9 ml. of the concentrated acid) have been added stir the solution with about 5 g. of decolourising carbon for 5 minutes, warm, and filter the solution with suction. Transfer the cold filtered solution of p-phenetidine hydrochloride to a 700 ml. conical flask, add 13 g. (12 ml.) of acetic anhydride and swirl the contents to dissolve the anhydride. Immediately add a solution of 16 g. of crystallised sodium acetate in 50 ml. of water and stir (or swirl) the contents of the flask vigorously. Cool the reaction mixture in an ice bath, filter with suction and wash with cold water. RecrystaUise from hot water (with the addition of a little decolourising carbon, if necessary), filter and dry. The yield of pure phenacetin, m.p. 137°, is 12 g. [Pg.997]

To make her own HBr solution the chemist needs to go down to the local specialty gas supplier. These sorts of businesses sell tanks of oxygen to hospitals, acetylene tanks to welding shops and, yes, HBr to underground chemists. The chemist places 200g of acetic acid in a small PP container or flask and then weighs the flask with its contents. Next, the flask is stirred in an ice bath tray that has just a small amount of ice to keep the contents cool and... [Pg.144]

Esters can participate m hydrogen bonds with substances that contain hydroxyl groups (water alcohols carboxylic acids) This confers some measure of water solubil ity on low molecular weight esters methyl acetate for example dissolves m water to the extent of 33 g/100 mL Water solubility decreases as the carbon content of the ester increases Fats and oils the glycerol esters of long chain carboxylic acids are practically insoluble m water... [Pg.846]

Hanus solution (for determination of iodine number) dissolve 13.2 g of iodine in a liter of glacial acetic acid that will not reduce chromic acid add sufficient bromine to double the halogen content determined by titration (3 mL is about the right amount). The iodine may be dissolved with the aid of heat, but the solution must be cold when the bromine is added. [Pg.1191]


See other pages where CONTENTS 4 Acetals is mentioned: [Pg.186]    [Pg.229]    [Pg.289]    [Pg.314]    [Pg.98]    [Pg.188]    [Pg.425]    [Pg.110]    [Pg.110]    [Pg.116]    [Pg.167]    [Pg.235]    [Pg.257]    [Pg.451]    [Pg.454]    [Pg.501]    [Pg.73]    [Pg.324]    [Pg.372]    [Pg.668]    [Pg.669]    [Pg.730]    [Pg.773]    [Pg.839]    [Pg.863]    [Pg.865]    [Pg.941]    [Pg.941]    [Pg.976]    [Pg.1000]    [Pg.1006]    [Pg.272]    [Pg.167]    [Pg.398]    [Pg.369]    [Pg.48]   


SEARCH



CONTENTS Potassium Acetate

Ethyl-phenol acetic acid content

Measured vinyl acetate content

TABLE OF CONTENTS PAGE Acrolein Acetal

© 2024 chempedia.info