Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyester fibers production

In summary, beginning in 1993, toluene consumption for TDP has been increasing because of -xylene demand for DMT/PTA, and in turn for polyester fiber production. This trend is expected to continue in the future and whenever the -xylene market is stronger than the benzene market, TDP units will operate, and HD A units will be shut down or converted to TDP units. [Pg.186]

The xylenes are very high-lonnage industrial chemicals and are raw materials or intermediate materials for numerous synthetic fibers, resins, and plastics. See also Xylene Polymers. A large amount of p-xylene goes into polyester fiber production, while substantial quantities of d-xylene are consumed by the manufacture of phthalic anhydride. The prime source of xylenes are petroleum refinery reformate streams in conjunction with benzene and toluene extraction. The xylenes occur mixed in these streams. [Pg.1763]

Polyurethane Foam Polyester Fiber Products Urethane Chemistry Research Consulting Upholstery Cushion Materials Memory Foam... [Pg.199]

ETHYLENE We discussed ethylene production in an earlier boxed essay (Section 5 1) where it was pointed out that the output of the U S petrochemi cal industry exceeds 5 x 10 ° Ib/year Approximately 90% of this material is used for the preparation of four compounds (polyethylene ethylene oxide vinyl chloride and styrene) with polymerization to poly ethylene accounting for half the total Both vinyl chloride and styrene are polymerized to give poly(vinyl chloride) and polystyrene respectively (see Table 6 5) Ethylene oxide is a starting material for the preparation of ethylene glycol for use as an an tifreeze in automobile radiators and in the produc tion of polyester fibers (see the boxed essay Condensation Polymers Polyamides and Polyesters in Chapter 20)... [Pg.269]

The production of polyester fibers leads that of all other types Annual United States production of poly ester fibers is 1 6 million tons versus 1 4 million tons for cotton and 1 0 million tons for nylon Wool and silk trail far behind at 0 04 and 0 01 million tons re spectively... [Pg.869]

The Textile Eiber Product Identification Act (TEPIA) requires that the fiber content of textile articles be labeled (16). The Eederal Trade Commission estabhshed and periodically refines the generic fiber definitions. The current definition for a polyester fiber is "A manufactured fiber ia which the fiber-forming substance is any long-chain synthetic polymer composed of at least 85% by weight of an ester of a substituted aromatic carboxyUc acid, including but not restricted to terephthalate units, and para substituted hydroxyben2oate units."... [Pg.325]

Woddwide, the production capacity for polyester fiber is approximately 11 million tons about 55% of the capacity is staple. Annual production capacity iu the United States is approximately 1.2 million tons of staple and 0.4 million tons of filament. Capacity utilization values of about 85% for staple and about 93% for filament show a good balance of domestic production vs capacity (105). However, polyester has become a woddwide market with over half of the production capacity located iu the Asia/Pacific region (106). The top ranked PET fiber-produciug countries are as follows Taiwan, 16% United States, 15% People s RepubHc of China, 11% Korea, 9% and Japan, 7% (107—109). Woddwide, the top produciug companies of PET fibers are shown iu Table 3 (107-109). [Pg.333]

PET is based on petroleum and the price of polyester fiber fluctuates with the price of -xylene and ethylene raw materials as well as with the energy costs for production. With the abiUty to interchange with other fibers, especially cotton iu cotton blends, the price of polyester is affected by the price and avadabihty of cotton as well as the supply and demand of polyester. [Pg.333]

Cydohexanedimethanol, 1,4- dim ethyl o1 cycl oh exa n e, or 1,4-bis (hydroxymethyl) cyclohexane (8), is a white, waxy soHd. The commercial product consists of a mixture of cis and trans isomers (6). This diol is used in the manufacture of polyester fibers (qv) (64), high performance coatings, and unsaturated polyester molding and laminating resins (5). [Pg.374]

Fig. 2. Ultrafine fibers are produced by spinning bicomponent or biconstituent polymer mixtures, highly stretching such products to ultrafine deniers, and extracting or otherwise removing the undesked matrix carrier to release the desked ultrafine fibers (30). For example, spinning polyester islands in a matrix of polystyrene and then, after stretching, dissolving the polystyrene to leave the polyester fibers cospinning polyester with polyamides, then stretching,... Fig. 2. Ultrafine fibers are produced by spinning bicomponent or biconstituent polymer mixtures, highly stretching such products to ultrafine deniers, and extracting or otherwise removing the undesked matrix carrier to release the desked ultrafine fibers (30). For example, spinning polyester islands in a matrix of polystyrene and then, after stretching, dissolving the polystyrene to leave the polyester fibers cospinning polyester with polyamides, then stretching,...
Correlation with markets for other products is particularly useful for a new product. For example, market growth history of an older product, eg, nylon, can be plotted on a graph to predict the probable growth for a newer product, eg, polyester fibers. Data for both products may be plotted on the same chart, though not necessarily to the same scale and with the time scale shifted to bring the respective curves in parallel. [Pg.535]

Naphthalenedicarboxylic Acid. This dicarboxyhc acid, a potential monomer in the production of polyester fibers and plastics with superior properties (105), and of thermotropic Hquid crystal polymers (106), is manufactured by the oxidation of 2,6-dialkylnaphthalenes (107,108). [Pg.503]

One of the limitations of the curtain/slot draw process is that the amount of fiber attenuation is constrained due to the short distance generally allowed between the spinnerette and the venturi slot and the use of relatively low pressure air for drawing so as not to induce high turbulence in the area of the laydown. In practical terms this has made the process difficult to adapt for the production of polyester fabrics which inherently require much higher fiber acceleration to attain the desired polyester fiber properties. [Pg.167]

Benzene, toluene, and xylene are made mosdy from catalytic reforming of naphthas with units similar to those already discussed. As a gross mixture, these aromatics are the backbone of gasoline blending for high octane numbers. However, there are many chemicals derived from these same aromatics thus many aromatic petrochemicals have their beginning by selective extraction from naphtha or gas—oil reformate. Benzene and cyclohexane are responsible for products such as nylon and polyester fibers, polystyrene, epoxy resins (qv), phenolic resins (qv), and polyurethanes (see Fibers Styrene plastics Urethane POLYiffiRs). [Pg.216]

The appearance of synthetic fibers in the 1920s accelerated the further development of anthraquinone dyes. Soon after British Celanese succeeded in commerciali2ing cellulose acetate fiber in 1921, anthraquinone disperse dyes for this fiber were invented by Stepherdson (British Dyestuffs Corp.) and Celatenes (Scottish Dyes) independendy. Anthraquinone disperse dyes for polyester fiber were developed after the introduction of this fiber by ICI and Du Pont in 1952. These dyes were improved products of the disperse dyes that had been developed for cellulose acetate fiber 30 years before. [Pg.304]

In 1923, the first disperse dye was developed for dyeing cellulose acetate fibers. However, in recent years the most important appHcation of disperse dyes has been to dye polyester fibers. Accompanied by the rapid growth of polyester fibers after World War II, disperse dyes have currendy achieved the largest production among all dye classes in terms of quantity (106). [Pg.320]

The phthalic acid and benzoic acid are reacted to form a reaction intermediate. The reaction intermediate is dissolved in sulfuric acid, which precipitates terephthalic acid (TPA). Fifty percent of the TPA is sold as a product and 50 percent is further processed at your facility into polyester fiber. The TPA Is treated with ethylene glycol to form an intermediate product, which is condensed to polyester. [Pg.38]

An explosion and fire (March 13, 1991) occurred at an ethylene oxide unit at Union Carbide Chemicals Plastics Co. s Seadrift plant in Port Lavaca, TX, 125 miles southwest of Houston. The blast killed one, injured 19, and idled the facility, that also produces ethylene, ethylene glycol, glycol ether ethanolamines, and polyethylene. Twenty-five residents were evacuated for several hours as a safety precaution. The plant lost all electrical power, for a few days, because its cogeneration unit was damaged. The Seadrift plant, with 1,600 workers, is capable of making 820 million lb per year of ethylene oxide which is one-third of Carbide s worldwide production of antifreeze, polyester fibers, and surfactants Seadrift produces two thirds of Carbide s worldwide production of polyethylene. [Pg.259]

Current world production of ethylene glycol is approximately 15 billion pounds. Most of that is used for producing polyethylene terephtha-late (PET) resins (for fiber, film, bottles), antifreeze, and other products. Approximately 50% of the world EG was consumed in the manufacture of polyester fibers and another 25% went into the antifreeze. [Pg.192]

Polyester fibers can be blended with natural fibers such as cotton and wool. The products have better qualities and are used for men s and women s wear, pillow cases, and bedspreads. Fiberfill, made from polyesters, is used in mattresses, pillows, and sleeping bags. High-tenacity polymers for tire cord reinforcement are equivalent in strength to nylon tire cords and are superior because they do not flat spot. V-belts and fire hoses made from industrial filaments are another market for polyesters. [Pg.362]


See other pages where Polyester fibers production is mentioned: [Pg.332]    [Pg.514]    [Pg.182]    [Pg.514]    [Pg.392]    [Pg.514]    [Pg.939]    [Pg.332]    [Pg.514]    [Pg.182]    [Pg.514]    [Pg.392]    [Pg.514]    [Pg.939]    [Pg.300]    [Pg.265]    [Pg.307]    [Pg.316]    [Pg.325]    [Pg.354]    [Pg.490]    [Pg.281]    [Pg.361]    [Pg.171]    [Pg.173]    [Pg.219]    [Pg.219]    [Pg.293]    [Pg.239]    [Pg.100]    [Pg.438]    [Pg.82]    [Pg.5]    [Pg.296]   
See also in sourсe #XX -- [ Pg.360 , Pg.361 , Pg.362 ]




SEARCH



Fiber product

Polyester fibers

Polyesters production

Polyesters products

© 2024 chempedia.info